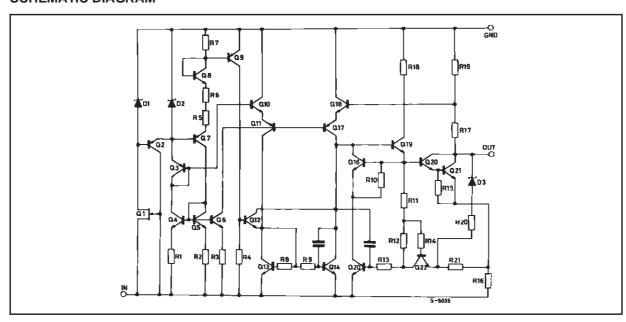


2% NEGATIVE VOLTAGE REGULATORS


- OUTPUT CURRENT UP TO 1.5 A
- OUTPUT VOLTAGES OF -5; -5.2; -6; -8; -12; -15; -18; -20; -22; -24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSITION SOA PROTECTION

DESCRIPTION

The L7900AC series of three-terminal negative regulators is available in TO-220 and D2PAK packages and several fixed output voltages. These regulators can provide local on-card regulation, eliminating the distribution problems with single point regulation; furthermore, having the same voltage option as the L7800A positive standard series, they are particularly suited for split power supplies. In addition, the -5.2V is also available for ECL system. If adequate heat sinking is provided, they can deliver over 1.5A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

SCHEMATIC DIAGRAM

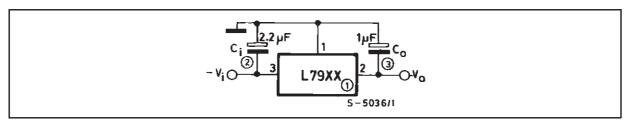
November 1999 1/11

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	DC Input Voltage (for $V_0 = -5$ to -18V) (for $V_0 = -20$, -24V)	-35 -40	V V
Io	Output Current	Internally limited	
P _{tot}	Power Dissipation	Internally limited	
T _{op}	Operating Junction Temperature Range	0 to 125	°C
T _{stg}	Storage Temperature Range	- 65 to 150	°C

THERMAL DATA

Symbol	Parameter	D ² PAK	TO-220	Unit
R _{thj-case}	Thermal Resistance Junction-case Max	3	3	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient Max	62.5	50	°C/W


CONNECTION DIAGRAM AND ORDERING NUMBERS (top view)

Туре	TO-220	D ² PAK (*)	Output Voltage
L7905AC	L7905ACV	L7905ACD2T	-5V
L7952AC	L7952ACV	L7952ACD2T	-5.2V
L7906AC	L7906ACV	L7906ACD2T	-6V
L7908AC	L7908ACV	L7908ACD2T	-8V
L7912AC	L7912ACV	L7912ACD2T	-12V
L7915AC	L7915ACV	L7915ACD2T	-15V
L7918AC	L7918ACV	L7918ACD2T	-18V
L7920AC	L7920ACV	L7920ACD2T	-20V
L7922AC	L7922ACV	L7922ACD2T	-22V
L7924AC	L7924ACV	L7924ACD2T	-24V

^(*) AVAILABLE IN TAPE AND REEL WITH "-TR" SUFFIX

APPLICATION CIRCUIT

ELECTRICAL CHARACTERISTICS FOR L7905A (refer to the test circuits, $T_j = 0$ to 125 $^{\circ}$ C,

 V_i = -10V, I_o = 500 mA, C_i = 2.2 μ F, C_o = 1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _j = 25 °C	-4.9	-5	-5.1	V
Vo	Output Voltage	$I_o = -5$ mA to -1 A $P_o \le 15$ W $V_i = 8$ to 20 V	-4.8	-5	-5.2	V
ΔV_o^*	Line Regulation	$V_i = -7 \text{ to } -25 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -8 \text{ to } -12 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			100 50	mV mV
ΔV_{o}^{*}	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			100 50	mV mV
Id	Quiescent Current	T _j = 25 °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	$V_i = -8 \text{ to } -25 \text{ V}$			1.3	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.4		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ $f = 120 \text{ Hz}$	54	60		dB
V _d	Dropout Voltage	$I_{o} = 1 \text{ A}$ $T_{j} = 25 ^{\circ}\text{C}$ $\Delta V_{O} = 100 \text{ mV}$		1.4		V
Isc	Short Circuit Current			2.1		Α
I _{scp}	Short Circuit Peak Current	T _j = 25 °C		2.5		Α

ELECTRICAL CHARACTERISTICS FOR L7952A (refer to the test circuits, $T_j = 0$ to 125 °C,

 V_i = -10V, I_o = 500 mA, C_i = 2.2 μ F, C_o = 1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _j = 25 °C	-5.1	-5.2	-5.3	V
Vo	Output Voltage	$I_o = -5 \text{ mA to -1 A} P_o \le 15 \text{ W}$ $V_i = -9 \text{ to -21 V}$	-5	-5.2	-5.4	V
ΔV_0^*	Line Regulation	$V_i = -8 \text{ to } -25 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -9 \text{ to } -13 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			105 52	mV mV
ΔV _o *	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_o = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			105 52	mV mV
I _d	Quiescent Current	T _j = 25 °C			3	mA
Δl _d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
Δl _d	Quiescent Current Change	V _i = -9 to -25 V			1.3	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.5		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		125		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ $f = 120 \text{ Hz}$	54	60		dB
V _d	Dropout Voltage	$I_o = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_O = 100 \text{mV}$		1.4		V
Isc	Short Circuit Current			2.1		Α
I _{scp}	Short Circuit Peak Current	T _j = 25 °C		2.5		Α

^{*} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS FOR L7906A (refer to the test circuits, $T_j = 0$ to 125 °C,

 V_i = -11V, I_o = 500 mA, C_i = 2.2 μ F, C_o = 1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-5.88	-6	-6.12	V
Vo	Output Voltage	$I_o = -5 \text{ mA to } -1 \text{ A} P_o \le 15 \text{ W}$ $V_i = -9.5 \text{ to } -21.5 \text{ V}$	-5.76	-6	-6.24	V
ΔV_{o}^{*}	Line Regulation	$V_i = -8.5 \text{ to } -25 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -9 \text{ to } -15 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			120 60	mV mV
ΔV_{o}^{*}	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			120 60	mV mV
Id	Quiescent Current	$T_j = 25$ °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_{d}	Quiescent Current Change	V _i = -9.5 to -25 V			1.3	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	$I_0 = 5 \text{ mA}$		-0.6		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		144		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_o = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_O = 100 \text{mV}$		1.4		V
Isc	Short Circuit Current			2		Α
I _{scp}	Short Circuit Peak Current	$T_j = 25$ °C		2.5		А

ELECTRICAL CHARACTERISTICS FOR L7908A (refer to the test circuits, $T_j = 0$ to 125 °C,

 V_i = -14V, I_0 = 500 mA, C_i = 2.2 μ F, C_0 = 1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-7.84	-8	-8.16	V
Vo	Output Voltage	$I_o = -5 \text{ mA to } -1 \text{ A}$ $P_o \le 15 \text{ W}$ $V_i = -11.5 \text{ to } -23 \text{ V}$	-7.68	-8	-8.32	V
ΔV_{o}^{*}	Line Regulation	$V_i = -10.5 \text{ to } -25 \text{ V} T_j = 25 \text{ °C}$ $V_i = -11 \text{ to } -17 \text{ V} T_j = 25 \text{ °C}$			160 80	mV mV
ΔV_{o}^{*}	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_o = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			160 80	mV mV
Id	Quiescent Current	$T_j = 25$ °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -11.5 to -25 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.6		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		175		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_{o} = 1 \text{ A}$ $T_{j} = 25 ^{\circ}\text{C}$ $\Delta V_{O} = 100 \text{mV}$		1.1		V
Isc	Short Circuit Current			1.5		Α
I _{scp}	Short Circuit Peak Current	$T_j = 25$ °C		2.5		А

 $^{^*}$ Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS FOR L7912A (refer to the test circuits, $T_j = 0$ to 125 °C,

 $V_i = -19V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-11.75	-12	-12.25	V
Vo	Output Voltage	$I_o = -5 \text{ mA to } -1 \text{ A}$ $P_o \le 15 \text{ W}$ $V_i = -15.5 \text{ to } -27 \text{ V}$	-11.5	-12	-12.5	٧
ΔV _o *	Line Regulation	$V_i = -14.5 \text{ to } -30 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -16 \text{ to } -22 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			240 120	mV mV
ΔV _o *	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			240 120	mV mV
Id	Quiescent Current	$T_j = 25$ °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	$V_i = -15 \text{ to } -25 \text{ V}$			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	$I_0 = 5 \text{ mA}$		-0.8		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		200		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_o = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_O = 100 \text{mV}$		1.1		V
Isc	Short Circuit Current			1.5		Α
I _{scp}	Short Circuit Peak Current	$T_j = 25$ °C		2.5		А

ELECTRICAL CHARACTERISTICS FOR L7915A (refer to the test circuits, $T_j = 0$ to 125 °C,

 V_i = -23V, I_0 = 500 mA, C_i = 2.2 μ F, C_0 = 1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _j = 25 °C	-14.7	-15	-15.3	V
Vo	Output Voltage	$I_o = -5 \text{ mA to -1 A} P_o \le 15 \text{ W}$ $V_i = -18.5 \text{ to -30 V}$	-14.4	-15	-15.6	V
ΔV_0^*	Line Regulation	$V_i = -17.5 \text{ to } -30 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -20 \text{ to } -26 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			300 150	mV mV
ΔV _o *	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_o = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			300 150	mV mV
I _d	Quiescent Current	T _j = 25 °C			3	mA
ΔI_d	Quiescent Current Change	$I_0 = 5 \text{ to } 1000 \text{ mA}$			0.5	mA
Δl _d	Quiescent Current Change	V _i = -18.5 to -30 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.9		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		250		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_o = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_O = 100 \text{mV}$		1.1		V
Isc	Short Circuit Current			1.3		Α
I _{scp}	Short Circuit Peak Current	T _j = 25 °C		2.3		Α

^{*} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS FOR L7918A (refer to the test circuits, $T_j = 0$ to 125 $^{\circ}$ C,

 V_i = -27V, I_o = 500 mA, C_i = 2.2 μ F, C_o = 1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-17.64	-18	-18.36	V
Vo	Output Voltage	$I_o = -5 \text{ mA to -1 A} P_o \le 15 \text{ W}$ $V_i = -22 \text{ to -33 V}$	-17.3	-18	-18.7	V
ΔV_{o}^{*}	Line Regulation	$V_i = -21 \text{ to } -33 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -24 \text{ to } -30 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			360 180	mV mV
ΔV_{o}^{*}	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			360 180	mV mV
Id	Quiescent Current	$T_j = 25$ °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -22 to -33 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-1		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		300		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_0 = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_0 = 100 \text{mV}$		1.1		V
Isc	Short Circuit Current			1.1		Α
I _{scp}	Short Circuit Peak Current	$T_j = 25$ °C		2.2		Α

ELECTRICAL CHARACTERISTICS FOR L7920A (refer to the test circuits, $T_j = 0$ to 125 °C,

 V_i = -29V, I_0 = 500 mA, C_i = 2.2 μ F, C_0 = 1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-19.6	-20	-20.4	V
Vo	Output Voltage	$I_o = -5 \text{ mA to } -1 \text{ A}$ $P_o \le 15 \text{ W}$ $V_i = -24 \text{ to } -35 \text{ V}$	-19.2	-20	-20.8	V
ΔV_{o}^{*}	Line Regulation	$V_i = -23 \text{ to } -35 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -26 \text{ to } -32 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			400 200	mV mV
ΔV_o^*	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_o = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			400 200	mV mV
Id	Quiescent Current	$T_j = 25$ °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -24 to -35 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-1.1		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		350		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_{o} = 1 \text{ A}$ $T_{j} = 25 ^{\circ}\text{C}$ $\Delta V_{O} = 100 \text{mV}$		1.1		V
Isc	Short Circuit Current			0.9		Α
I _{scp}	Short Circuit Peak Current	$T_j = 25$ °C		2.2		Α

 $^{^*}$ Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

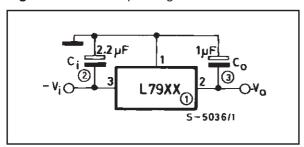
ELECTRICAL CHARACTERISTICS FOR L7922A (refer to the test circuits, $T_j = 0$ to 125 $^{\circ}$ C,

 V_i = -31V, I_o = 500 mA, C_i = 2.2 μ F, C_o = 1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-21.5	-22	-22.4	V
Vo	Output Voltage	$I_o = -5 \text{ mA to -1 A}$ $P_o \le 15 \text{ W}$ $V_i = -26 \text{ to -37 V}$	-21.1	-22	-22.8	V
ΔV_{o}^{*}	Line Regulation	$V_i = -25 \text{ to } -37 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -28 \text{ to } -34 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			440 220	mV mV
ΔV_{o}^{*}	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			440 220	mV mV
Id	Quiescent Current	$T_j = 25$ °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -26 to -37 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	$I_0 = 5 \text{ mA}$		-1.1		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		375		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_o = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_O = 100 \text{mV}$		1.1		V
Isc	Short Circuit Current			1.1		А
I _{scp}	Short Circuit Peak Current	$T_j = 25$ °C		2.2		А

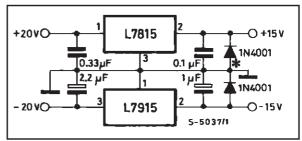
ELECTRICAL CHARACTERISTICS FOR L7924A (refer to the test circuits, $T_j = 0$ to 125 °C,

 V_i = -33V, I_0 = 500 mA, C_i = 2.2 μ F, C_0 = 1 μ F unless otherwise specified)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-23.5	-24	-24.5	V
Vo	Output Voltage	$I_o = -5 \text{ mA to } -1 \text{ A} P_o \le 15 \text{ W}$ $V_i = -27 \text{ to } -38 \text{ V}$	-23	-24	-25	V
ΔV_{o}^{*}	Line Regulation	$V_i = -27 \text{ to } -38 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -30 \text{ to } -36 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			480 240	mV mV
ΔV_o^*	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_o = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			480 240	mV mV
Id	Quiescent Current	$T_j = 25$ °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -27 to -38 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-1		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		400		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_o = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_O = 100 \text{mV}$		1.1		V
Isc	Short Circuit Current			1.1		Α
I _{scp}	Short Circuit Peak Current	T _j = 25 °C		2.2		А

 $^{^*}$ Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

APPLICATION INFORMATION


Figure 1: Fixed Output Regulator.

Notes:

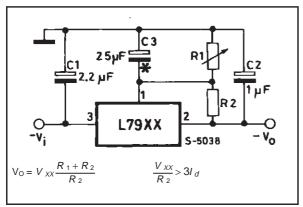
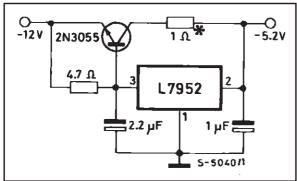

- 1. To specify an output voltage, substitute voltage value for "XX".
- 2. Required for stability. For value given, capacitor must be solid tantalum. If aluminium electrolitics are used, at least ten times value should be selected. C_1 is required if regulator is located an appreciable distance from power supply filter.
- 3. To improve transient response. If large capacitors are used, a high current diode from input to output (1N4001 or similar) should be introduced to protect the device from momentary input short circuit

Figure 2: Split Power Supply (± 15V/1A).

Against potential latch-up problems.


Figure 3: Circuit for Increasing Output Voltage.

C3 Optional for improved transient response and ripple rejection.

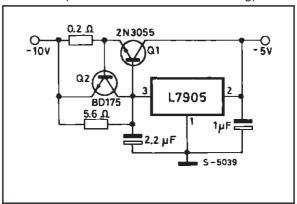
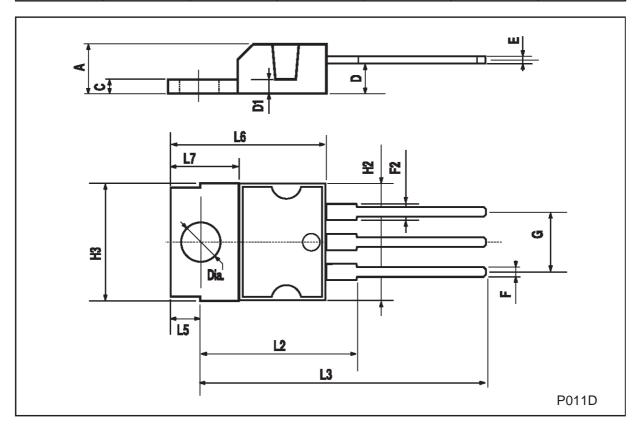
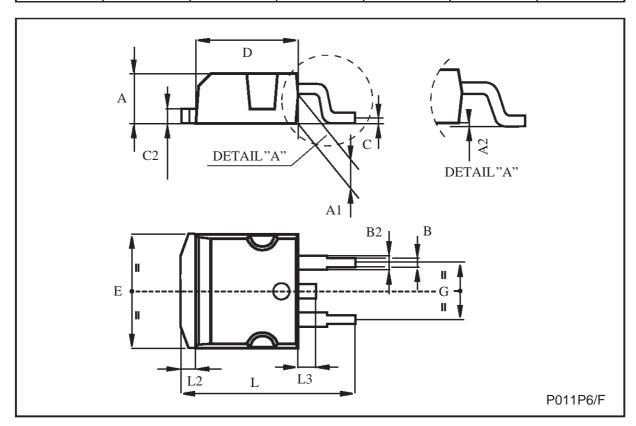

Co Optional for improved transient response and hippie rejection.

Figure 5 : Typical ECL System Power Supply (– 5.2V/4A).

Optional dropping resistor to reduce the power dissipated in the boost transistor.


Figure 4: High Current Negative Regulator (– 5V/4A with 5A current limiting).

*5*7


TO-220 MECHANICAL DATA

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			4.8			0.189	
С			1.37			0.054	
D	2.4		2.8	0.094		0.110	
D1	1.2		1.35	0.047		0.053	
Е	0.35		0.55	0.014		0.022	
F	0.61		0.94	0.024		0.037	
F2	1.15		1.4	0.045		0.055	
G	4.95	5.08	5.21	0.195	0.200	0.205	
H2			10.4			0.409	
H3	10.05		10.4	0.396		0.409	
L2		16.2			0.638		
L3	26.3	26.7	27.1	1.035	1.051	1.067	
L5	2.6		3	0.102		0.118	
L6	15.1		15.8	0.594		0.622	
L7	6		6.6	0.236		0.260	
Dia.	3.65		3.85	0.144		0.152	

TO-263 (D²PAK) MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
E	10		10.4	0.393		0.409
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.624
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

