QUAD INVERTING TRANSISTOR SWITCH

- OUTPUT VOLTAGE TO 50 V
- OUTPUT CURRENT TO 1.2A
- VERY LOW SATURATION VOLTAGE
- TTL COMPATIBLE INPUTS
- INTEGRAL SUPPRESSION DIODE

DESCRIPTION

The L9222 monolithic quad transistor switch is designed for high current, high voltage switching applications.
Each of the four switches is controlled by a logic input and all four are controlled by a common enable input. All inputs are TTL-compatible for direct connection to logic circuits. Each switch consists of an open-collector transistor plus a clamp diode for applications with inductive loads.

The emitters of the four switches are connected together to GND. The switches of the same device may be paralled. The device is intended to drive coilssuch as relays, solenoids, unipolar steppermotors, LED etc.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {OUT }}$	Output Voltage	-0.7 to 50	V
$\mathrm{~V}_{\mathrm{CC}}$	Logic Supply Voltage	7	V
$\mathrm{~V}_{\mathrm{i}}$	Input Voltage	-0.7 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{~T}_{\mathrm{j},} \mathrm{T}_{\mathrm{ST}}$	Junction and Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$

PIN CONNECTION (top view)

TRUTH TABLE

Enable	Input	Power Out
H	L	ON
H	H	OFF
L	X	OFF

For each input: $\mathrm{H}=$ High level

$$
\begin{gathered}
L=\text { Low level } \\
X=\text { Don't care }
\end{gathered}
$$

THERMAL DATA

Symbol	Parameter	Value	Unit	
$R_{\text {th }}$ j-amb	Thermal Resistance Junction-ambient	Max	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th-J-case }}$	Thermal Resistance Junction-case	Max	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$

\qquad

ELECTRICAL CHARACTERISTICS (VCC $=5 \mathrm{Vdc} \pm 5 \% \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}-40 \leq \mathrm{T}_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {CE(sus) }}$	Output Sustaining Voltage	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V} \mathrm{~V}_{\text {EN }}=2 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$	46			V
$I_{\text {cex }}$	Output Leakage Current	$\begin{aligned} & \begin{array}{l} \mathrm{V} \\ \mathrm{CE} \end{array}=50 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V} \\ & \hline \end{aligned}$			1	mA
$\mathrm{V}_{\text {CE(sat) }}$	Collector Emitter Saturation	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 0.8 \mathrm{~V} \\ & \text { lout }=0.1 \mathrm{~A} \\ & \text { lout }=0.3 \mathrm{~A} \\ & \text { lout }=0.6 \mathrm{~A} ;-40+105^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & 0.3 \\ & 0.5 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VIL	Input Low Voltage				0.8	V
IIL	Input Low Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-15			$\mu \mathrm{A}$
V_{IH}	Input High Voltage		2.0			V
IIH	Input High Current	V IN $\geq 2.0 \mathrm{~V}$	-15			$\mu \mathrm{A}$
Is	Logic Supply Current	All Outputs ON lout $=06 \mathrm{~A}$		50	90	mA
		All Outputs OFF		10	20	mA
IR	Clamp Diode Leakage Current	$V_{R}=50 \mathrm{~V}$ Diode Reverse Voltage			100	$\mu \mathrm{A}$
V_{F}	Clamp Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=0.6 \mathrm{~A}$			1.8	V
		$\mathrm{I}_{\mathrm{F}}=1.2 \mathrm{~A}$			2.0	V
lout	Output Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}, \mathrm{R}=10 \Omega, \mathrm{~V}_{\mathrm{S}}=13 \mathrm{~V}$	0.9	1.2		A
$\mathrm{T}_{\text {PHL }}$	Propagation Delay Time (high to low transition)	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{lL}=600 \mathrm{~mA} \\ & \hline \end{aligned}$			20	$\mu \mathrm{s}$
TPHL	Propagation Delay Time (low to high transition)	$\begin{aligned} & \mathrm{IL}^{2}=600 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$			20	$\mu \mathrm{s}$
$\mathrm{V}_{\text {ENL }}$	Low Enable Voltage				0.8	V
$\mathrm{I}_{\text {ENL }}$	Low Enable Current	$\mathrm{V}_{\mathrm{EN}}=0.4 \mathrm{~V}$	- 15			$\mu \mathrm{A}$
$\mathrm{V}_{\text {ENH }}$	High Enable Voltage		2.0			V
IENH	High Enable Voltage	$\mathrm{V}_{\mathrm{EN}} \geq 2.0 \mathrm{~V}$	-15		15	$\mu \mathrm{A}$

POWERDIP16 PACKAGE MECHANICAL DATA

DIM.	mm			Inch		
	MIN.	TYP.	MAX.	MIN.	TYP/	MAX:
a1	0.51			0.020		
B	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			20.0			0.787
E		8.80			0.346	
e		2.54			0.100	
e3		17.78			0.700	
F			7.10			0.280
I			5.10			0.201
L		3.30			0.130	
Z			1.27			0.050

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

