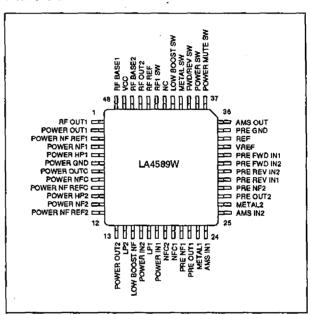

Ordering number : EN3968

OVERVIEW

The LA4589W is a 1.5 V stereo headphone preamplifier and power amplifier IC that provides all the functions of a complete playback system in a single chip, making it ideal for battery-powered, portable cassette players.

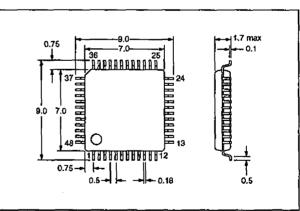
The LA4589W incorporates a metal/normal-tape equalization preamplifier, a power amplifier dual power supply ripple filters, a reference voltage amplifier that enables small-value (under 1 μ F) virtual-earth capacitors to be used, and a system controller.


The LA4589W features single-pin control bass boost and forward/reverse playback, an automatic music search (AMS) function, inputs for an auto-reverse tape mechanism, a power amplifier mute function a power switch, and selectable, single or dual ripple filter operation.

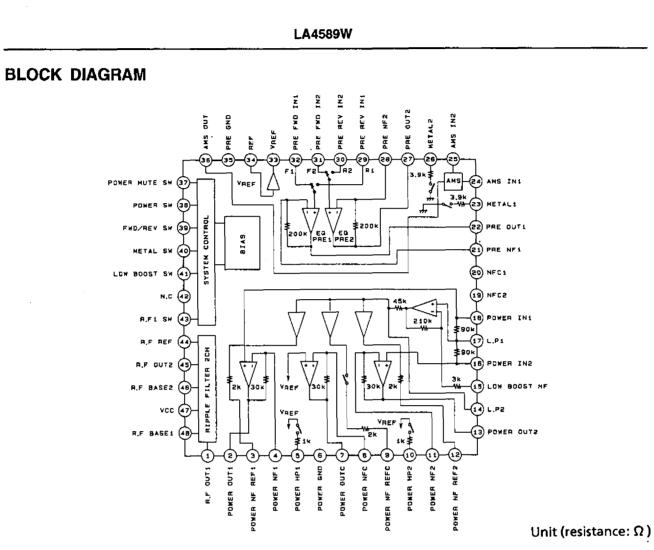
The LA4589W operates from a 0.95 to 2.2 V supply and is available in 48-pin SQFPs.

FEATURES

- Single-pin control bass boost
- Automatic music search (AMS)
- · Preamplifier inputs for auto-reverse tape mechanism
- Single-pin control forward/reverse playback selection
- Two, on-chip, ripple filters
- Selectable, single or dual ripple filter operation
- Metal- and normal-tape modes
- Power amplifier mute function
- On-chip reference voltage amplifier
- No power amplifier output capacitors required.
- 73 dB (typ) preamplifier open-loop voltage gain
- 21 mW (typ) output power with bass boost
- Built-in noise reduction capacitors
- 0.95 to 2.2 V supply
- 48-pin SQFP


PINOUT

PACKAGE DIMENSIONS


Unit: mm

3163-SQFP48

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

5062TS No.3968-1/12

PIN DESCRIPTION

Number	Name	Equivalent circuit	Description
1	RFOUT 1		Ripple filter outputs. Nominal voltage is 1.13 V.
45	RFOUT2	* 0	
2	POUT1	↓ ≯ _⊀	Power amplifier output 1. Nominal voltage is 0.6 V.
7	POUTC		Power amplifier common output. Nominal voltage is 0.6 V.
13	POUT2		Power amplifier output 2. Nominal voltage is 0.6 V.
3	PNFREF1	t t.	Power amplifier output 1 negative feedback reference voltage. Nominal voltage is 0.75 V.
9	PNFREFC	3-+	Power amplifier common output negative feedback reference voltage. Nominal voltage is 0.75 V.
12	PNFREF2		Power amplifier output 2 negative feedback reference voltage, Nominal voltage is 0.75 V.

No.3968-2/12

. .

.

Number	Name	Equivalent circuit	Description
4	PNF1	30 kG	Power amplifier output 1 negative feedback network connection. Nominal voltage is 0.75 V.
8	PNFC		Power amplifier common output negative feedback network connection. Nominal voltage is 0.75 V.
11	PNF2		Power amplifier output 2 negative feedback network connection. Nominal voltage is 0.75 V.
5	PHP1		Power amplifier highpass filter outputs for bass boost.
10	PHP2	€ 100 kΩ 100 kΩ	Nominal voltage is 0.75 V.
6	PGND		Power amplifier ground
14	LP2		Bass boost amplifier lowpass filter capacitor connection 2. Nominal voltage is 0.75 V.
15	LBNF		Bass boost amplifier negative feedback capacitor connection. Nominal voltage is 0.75 V.
16	PIN2	(5) 10 KG K	Power amplifier inputs. Nominal voltage is 0.75 V.
18	PIN1		romei ampiniei mpuis. Nommai Voltage 15 0.75 V.
17	LP1	10 KQ 300 Q 80 KQ 80 KQ	Bass boost amplifier lowpass filter capacitor connection 1. Nominal voltage is 0.75 V.

No.3968-3/12

•••

-

LA4589W

Number	Name	Equivalent circuit	Description
19	NFC2	* 4 43 kΩ	Negative feedback capacitor connections. Nominal voltage is 0.75 V.
20	NFC1		
21	PRENF1	200 kΩ 200 kΩ	Preamplifier channel 1 negative feedback network connection. Nominal voltage is 0.75 V.
28	PRENF2		Preamplifier channel 2 negative feedback network connection. Nominal voltage is 0.75 V.
22	PREOUT1	₩ \$200 kΩ }	
27	PREOUT2	22 300 Ω 77 77	Preamplifier outputs. Nominal voltage is 0.45 V.
23	METAL1	3.9 kG	Preamplifier channel 1 metal-tape mode connection. Nominal voltage is 0 V,
26	METAL2		Preamplifier channel 2 metal-tape mode connection. Nominal voltage is 0 V.
24	AMSIN1		Automatic music search inputs. Nominal voltage is 0.75 V.
25	AMSIN2		
29	PRERII	300 Q 10 pF	Preamplifier reverse playback inputs. Nominal voltage is 0.75 V.
30	PRERI2		

No.3968-4/12

Number	Name	Equivalent circuit	Description			
31	PREFi2	300 Ω 10 PF	Preamplifier forward playback inputs. Nominal voltage is 0.75 V.			
32	PREFI1					
33	VREF					
34	REF		Reference voltage amplifier output. Nominal voltage is 0.75 V.			
35	PREGND		Preamplifier ground			
36	AMSOUT	300 Ω 300 Ω 300 μ 300 kΩ 777 777	Automatic music search output			
37	PMUTESW		Power amplifier mute control input			
41	LBSW		Bass boost control input			
38	PSW	3B 200 kn 22 kn 2	Power switch control input			

• • • • •

No.3968-5/12

÷.,

.

Number	Name	Equivalent circuit	Description
39	F/RSW		Forward/reverse playback control input
40	METALSW		Metal-tape mode control input
43	RF1SW		Ripple filter output 1 control input
42	NC		No connection
44	RFREF	445 kΩ 3000 Ω 41 415 kΩ 3000 Ω 41 415 kΩ 415 kΩ	Ripple filter capacitor connection, Nominal voltage is 1.13 V.
46	RFBASE2		Ripple filter external pnp-transistor 2 base connection. Nominal voltage is 0.5 V.
48	RFBASE1		Ripple filter external pnp-transistor 1 base connection. Nominal voltage is 0.5 V.
47	VCC		Supply voltage

LA4589W

Note Nominal voltages are measured when $V_{CC} = 1.2$ V.

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	3.0	v
Power dissipation	Po	320	mW
Operating temperature range	Topr	-10 to 60	°C
Storage temperature range	T _{sig}	-40 to 125	℃

Recommended Operating Conditions

 $T_{a} = 25 \ ^{\circ}C$

Parameter	Symbol	Rating	Unit
Supply voltage	· V _{CC}	1.5	V
Supply voltage range	Vcc	0.95 to 2.2	ν

No.3968-6/12

Electrical Characteristics

Preamplifier and power amplifier

 V_{CC} = 1.2 V, T_a = 25 °C, f = 1 kHz, 0 dBm = 0.775 V, R_L = 10 k Ω (preamplifier), R_L = 16 Ω (power amplifier)

Parameter	Symbol	Condition	Rating			Unit
Parameter	Symbol	Condition	min	typ	max	
Quiescent supply current	1000	$R_g = 2.2 \text{ k}\Omega, R_V = 0 \Omega$	8	15	24	mA
		PSW is OFF.	-	0.1	5.0	μA
Closed-loop voltage gain	VGT	$V_0 = -20 \text{ dBm},$ $R_V = 10 \text{ k}\Omega$	54	57	60	dB

Preamplifier

. .

$V_{CC} = 1.2$ V, $T_a = 25$ °C, f = 1 kHz, 0 dBm = 0.775 V, $R_L = 10$ k Ω (preamplifier), $R_L = 16$ Ω (power amplifier)

Demonster	Overhal	0 ++ H1-+	Rating			
Parameter	Symbol	Condition	min	typ	max	Unit
Open-loop voltage gain	VGo	Vo =20 dBm	60	73	_	dB
		$V_0 = -20 \text{ dBm}$	34.0	35.5	37.0	
Closed-loop voltage gain	VGc	$V_0 = -20$ dBm, f = 10 kHz. METALSW is ON.	25.5	28.0	30,5	dB
Maximum output voltage	Vo max	THD = 1%	100	210	-	m۷
Total harmonic distortion	THD	$\begin{array}{l} VG = 35.5 \mbox{ dB/NAB,} \\ V_O = 100 \mbox{ mV} \end{array}$	-	0.1	0.5	%
Input noise voltage	V _{NI}	$R_g = 2.2 \text{ k}\Omega$, 20 Hz to 20 kHz bandpass filter	-	1.3	3.0	μV
Crosstalk rejection between channel 1 and channel 2	ст	$R_g = 2.2 k\Omega_r$	45	56	-	
Crosstalk rejection between forward and reverse tracks	61	Vo ≃ -20 dBm, 1 kHz tuned filter	65	78	-	d₿
Supply voltage ripple rejection ratio	SVRR	$R_{g} = 2.2 k\Omega,$ $V_{r} = -30 dBm,$ $I_{r} = 100 Hz,$ 100 Hz tuned filter	45	52	-	dB

Power amplifier with bass boost

$V_{cc} = 1.2 \text{ V}, T_a = 25 \text{ °C}, f = 1 \text{ kHz}, 0 \text{ dBm} = 0.775 \text{ V}, R_L = 10 \text{ k}\Omega$ (preamplifier), $R_L = 16 \Omega$ (power amplifier)

Symbol	0 dhia	Rating			
	Condition	min	typ	max	Unit
	V _{0.} = -20 dBm	20.5	23.0	25.5	
	$V_0 = -20 \text{ dBm.}$ LBSW is ON.	20.5	23.0	25.5	
VGc	$V_0 = -20$ dBm, f = 10 kHz. LBSW is ON.	24.5	27.5	30.5	dB
		$V_{O.} = -20 \text{ dBm}$ $V_{O} = -20 \text{ dBm.}$ $LBSW \text{ is ON.}$ VG_{C} $V_{O} = -20 \text{ dBm.}$	$V_{0.} = -20 \text{ dBm} 20.5$	Symbol Condition min typ $V_{0.} = -20$ dBm 20.5 23.0 $V_{0.} = -20$ dBm. 20.5 23.0 VGc $V_{0.} = -20$ dBm. 20.5 23.0	Symbol Condition min typ max $V_{0.} = -20 \text{ dBm}$ 20.5 23.0 25.5 $V_{0.} = -20 \text{ dBm}$ 20.5 23.0 25.5 V_{Gc} $V_{0.} = -20 \text{ dBm}$ 20.5 23.0 25.5

$V_0 = -20 \text{ dBm},$ t = 100 Hz. LBSW is ON.	30	34	38	

No.3968-7/12

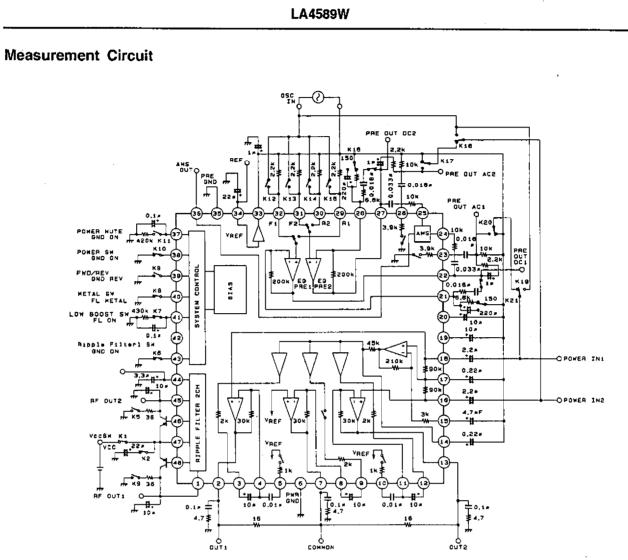
Devenueter	Sumbol	Condition	Rating			
Parameter	Symbol	Condition	min	typ	max	Unit
	Po	THD = 10%	5	9	_	
Output power		THD = 10%, f = 100 Hz. LBSW is ON.	13	21	_	mW
Total harmonic distortion	THD	$P_0 = 1 mW$	-	0.5	1.5	%
Crosstalk rejection between left and right channels	СТ	$V_0 = -20 \text{ dBm},$ $R_V = 0 \Omega$	38	43	L	dB
Output noise voltage	V _{NO}	$R_V = 0 \Omega$, 20 Hz to 20 kHz bandpass filter	-	35	48	μ٧
Supply voltage ripple rejection ratio	SVRR	$\begin{array}{l} R_V = 0 \ \Omega, \ V_r = -30 \ dBm, \\ f_r = 100 \ Hz, \\ 100 \ Hz \ tuned \ filter \end{array}$	50	74	-	dB
Input impedance	Ri		8	10	12	kΩ
Voltage gain differential	ΔVG		_	0	1.5	dB

Ripple filter

• • •

 $V_{CC} = 1.0$ V, $T_{a} = 25$ °C, f = 1 kHz, 0 dBm = 0.775 V, $R_{L} = 10$ k Ω (preamplifier), $R_{L} = 16$ Ω (power amplifier)

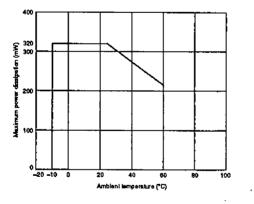
Parameter	Symbol	Condition	Rating			Unit	
Paramoter			min	typ	max	Unit	
Output voltage	VRF	I _{RF} = 25 mA	0.89	0.93	_	v	
Supply vołtage ripple rejection ratio	SVAR	$ I_r = 100 \ \text{Hz}, \\ V_r = -30 \ \text{dBm}, \\ I_{\text{RF}} = 25 \ \text{mA}, \\ \text{output transistors with} \\ h_{\text{FE}} \ge 6 \ (2\text{SB1295}) $	33	39	-	dB	


Automatic music search (AMS)

 $V_{cc} = 1.2$ V, $T_{a} = 25$ °C, f = 1 kHz, 0 dBm = 0.775 V, $R_L = 10$ k Ω (preamplifier), $R_L = 16$ Ω (power amplifier)

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	Unit
AMS outpul voltage	Voams	V _{PREOUT1} = V _{PREOUT2} = 6 mV	470	570	670	mV

.


No.3968-8/12

Typical Performance Characteristics

Unit (resistance: Ω , capacitance: F)

Maximum power dissipation vs. ambient temperature

No.3968-9/12

FUNCTIONAL DESCRIPTION

Preamplifier

The preamplifier incorporates equalization networks for normal- and metal-tape playback modes, and tape-direction switches for an auto-reverse cassette mechanism.

When METALSW is floating, metal-tape mode is selected. METAL1 and METAL2 are grounded internally through 3.9 k Ω resistors, adjusting the negative feedback network to provide metal-tape playback equalization.

When F/RSW is floating, forward playback mode is selected, and PREFI1 and PREFI2 are connected to the preamplifier inputs. When F/RSW is grounded, reverse playback mode is selected, and PRERI1 and PRERI2 are connected to the preamplifier inputs.

The automatic music search (AMS) circuit generates a signal that controls the cassette mechanism fast-forward and reverse functions in response to pauses between music tracks. The signal on AMSOUT is a pulse wave whose amplitude varies with the input signal levels on AMSIN1 and AMSIN2.

Power Amplifier

The power amplifier incorporates an additional amplifier to provide bass boost and mute functions.

When LBSW is floating, the bass boost function is selected. PHP1 and PHP2 are connected to VREF through 1 k Ω internal resistors, adjusting the negative feedback network to provide highpass filtering.

When PMUTESW is grounded, the power amplifier mute function is selected.

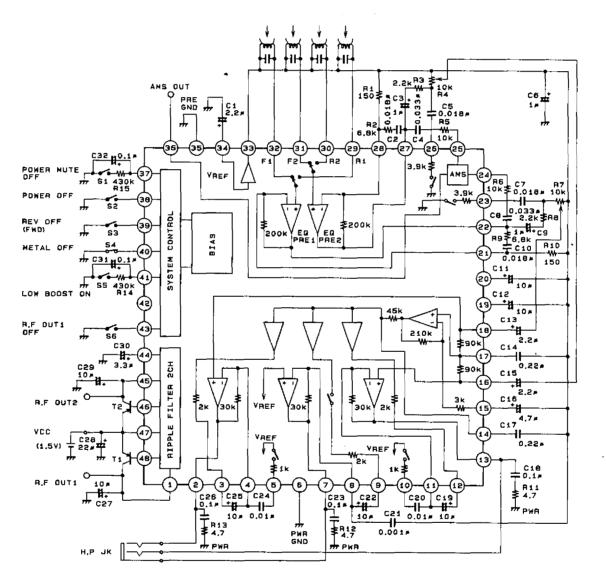
Ripple Filter

The ripple filters can be configured for either single or dual-filter operation. When RF1SW is grounded, the ripple filters are configured for dual-filter operation and RFOUT1 is active.

Component	Recommended value	Description Reference voltage amplifier decoupling capacitor. Decreasing the capacitance reduces the supply voltage ripple rejection ratio.	
C1	1.0 to 10 μF		
C2, C10		Preamplifier equalization RC network capacitors.	
C3, C9	0.47 to 3.3 µF	Preamplifier output capacitors	
C4, C8	-	AMS input highpass filter RC network capacitors	
C5, C7	-	Metal-tape equalization RC network capacitors	
C6	0.1 to 22 μF	Reference voltage decoupling capacitor. Reduces high-band noise.	
C11, C12	3.3 to 10 µF	NFC decoupling capacitors. Decreasing the capacitance reduces the preamplifier low-band gain.	
C13, C15	1.0 to 3.3 μF	Power amplifier input capacitors	
C14, C17	-	Low-boost towpass filter and amplifier gain adjust capacitors	
C16	1.0 to 4.7 μF	Bass boost amplifier negative feedback capacitor. Decreasing the capacitance reduces the low-bark gain.	
C18, C23, C26	0.1 lo 1.0 μF	Power amplifier output oscillation-damping RC network capacitors	
C19, C22, C25	3.3 to 10.0 μF	Power amplifier negative leedback capacitors. Decreasing the capacitance reduces the low-band gain.	
C20, C24		Power amplifier highpass filter high-band gain adjust capacitors (bass-boost only)	
C21	100 to 2200 pF	Smoothing capacitor	
C27, C29	4.7 to 10 μF	Ripple filter output decoupling capacitors	
C28	22 to 220 μF	Power supply capacitor	
C30	2.2 to 10.0 μF	Ripple filter capacitor	

External Components Required

C31, C32	0.047 to 0.22 µF	Switching noise filter capacitors
R1 , R10	-	Preamplifier gain adjust resistors


No.3968-10/12

• •

LA	4589W	

Component	Recommended value	Description	
R2, R9		Preamplifier equalization RC network resistors	
R3, R8		Metal-tape preamplifier equalization RC network resistors	
R4, R7	10 kΩ variable	Volume control resistors	
R5, R6	_	Automatic music search (AMS) highpass lilter and gain adjust resistors	
R11, R12, R13		Power amplifier output oscillation-damping RC network resistors	
R14, R15	100 to 430 kΩ	Switching noise filter resistors	

TYPICAL APPLICATION

No.3968-11/12

	LA4589W
	· · · · · · · · · · · · · · · · · · ·
•	
X	
	No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
	 Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use: ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
	Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guarant- eed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

•	third parties.	
`	······································	 No.3968-12/12