
Monolithic Linear IC

Overview

The LA5607 is a low-dropout voltage regulator IC for BS/CS tuner applications, equipped with four regulators capable of ON/OFF control plus reset function.

Applications

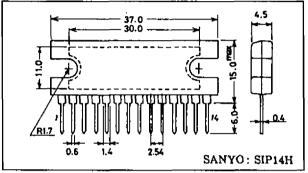
- BS/CS tuner power supply system.
- Audio Video (AV) equipments with BS/CS recievers.
- Compact electronic equipment.

Functions

- Four low-dropout regulators (15.7 V/300 mA, 12 V/150 mA, 9 V/100 mA and 5 V/500 mA).
- Output on/off control ("L" active).
- · On-chip protective circuitry (current limitter, thermal shut down).
- On-chip microcontroller reset signal generation circuit.

Features

- · Supports compact set design while incorporating four regulators needed by BS/CS tuners.
- Flexible system design by independent on/off control of V_01 , V_04 , as well as V_02 and V_03 pair.
- · Reduces internal loss by employment of low-dropout voltage regulators.
- · Adapting three input pins contributes power dissipation reduction and heat sink design.
- On-chip reset signal generation circuit is most suitable for tuners using microcontrollers.


Specifications

Maximum Ratings at Ta = 25°C

Maximum Ratings at Ta	$= 25^{\circ}C$			unit
Maximum input voltage	V _{IN} max	V _{IN} 1≥V _{IN} 2≥V _{IN} 3	35	v
Enable pin voltage	V _{EN} max	EN1, EN2, EN3	V _{IN} max	v
Allowable power dissipation	Pd max	With infinite heat sink	15	w
		With no heat sink	4.3	W
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-55 to +150	°C
Operating Conditions a	t Ta = 25°C			unit
Output current 1	Iol	Regulator 1	5 to 300	mA
Output current 2	J ₀ 2	Ragulator 2	1 to 150	mA
Output current 3	I _O 3	Regulator 3	1 to 100	mA
Output current 4	I _O 4	Regulator 4	5 to 500	mA
Reset output source current	I _{ORH}	SOURCE	0 to 200	μA
Reset output sink current	IORL	SINK	0 to 2	mA

Package Dimensions

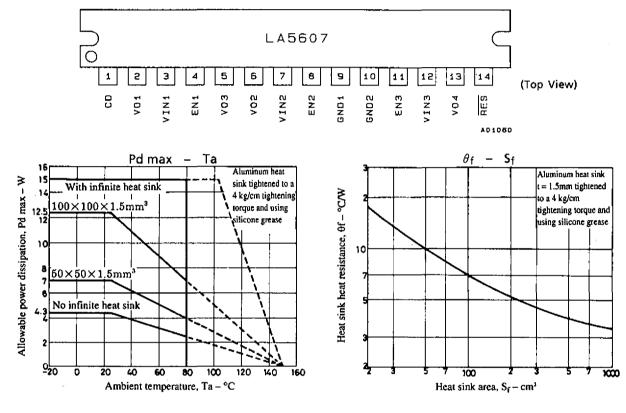
unit : mm 3023A-SIP14H

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

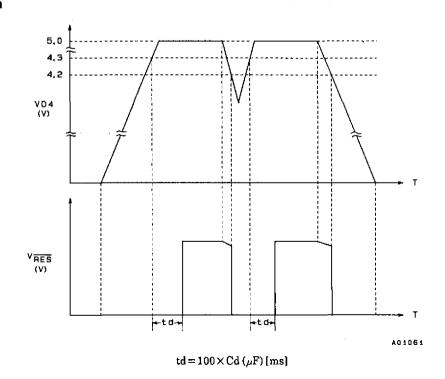
Operating Characteristics at $Ta = 25^{\circ}C$ and the specified Test Circuit

• --

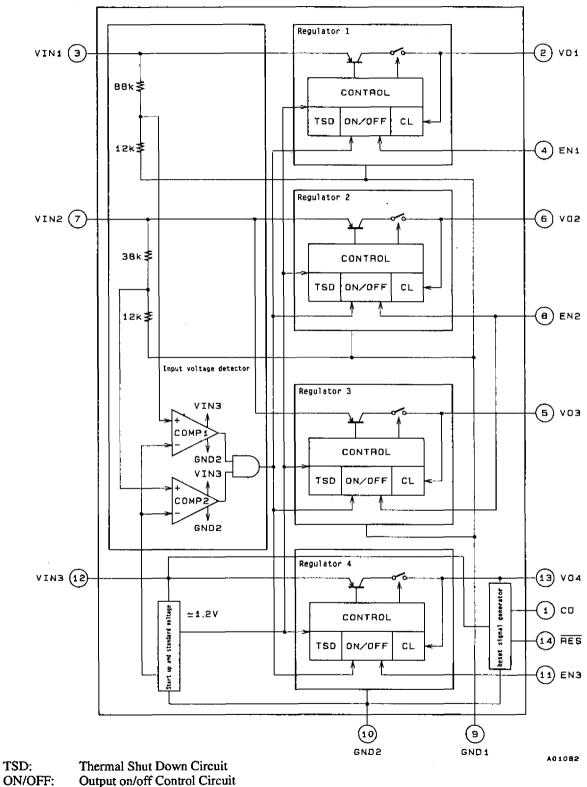
Regulator 1 (V_{EN} 1 = "L", V	$V_01: ON, V_{IN}1 = 13$	8.7 V and $I_0 1 = 300 \text{ mA}$)	min	typ	max	unit
Output voltage 1	V ₀ 1		14.9	15.7	16.5	v
Dropout voltage	V _{DROP1-1}			0.3	0.6	v
	V _{DROP1-2}	$I_0 1 = 150 mA$		0.15	0.3	v
Line regulation	∆V _{OLN} 1	17.5V≤V _{IN} 1≤23V		20	100	mV
Load regulation	∆V _{OLD} I	5mA≤I ₀ 1≤300mA		40	200	mV
Peak output current	I _{OP} 1		300	540		mA
Output short current	I _{OSC} 1			150		mA
Output on control voltage	V _{ENL} 1	V _O 1: On			0.4	v
Output off control voltage	V _{ENH} 1	V _o 1: Off	2.0		V _{IN} 1	v
Output "L"-level voltage	V ₀ 1 OFF				0.2	v
Output noise voltage	V _{NO} 1	10Hz≤f≤100kHz		110		μVrms
Ripple rejection	Rrejl	$f = 120Hz, 18V \le V_{IN} 1 \le 23V$		50		dB
Regulator 2 ($V_{EN}2 = "L"$, V	V_0^2 : ON, $V_{1N}^2 = 1$	$5.0V, I_0 2 = 150mA)$				
Output voltage 2	v _o 2	-	11.4	12.0	12.6	v
Dropout voltage	V _{DROP} 2		••••	0.3	1.0	v
Line regulation	∆V _{OLN} 2	12.6V≤V _{IN} 2≤23V		20	100	mV
Load regulation	ΔV_{OLD}^2	1mA≤ĭ ₀ 2≤150mA		20	70	mV
Peak output current	I _{OP} 2		150	270		mA
Output short current	I _{OSC} 2		150	70		mA
Output on control voltage	Vosc≁ V _{ENL} 2	V _O 2: On			0.4	v
Output off control voltage	V _{ENH} 2	V ₀ 2:Off	2.0		V _{IN} 2	v
Output "L"-level voltage	V _D 2OFF	V02.011	2.0		0.2	v
Output noise voltage	V _{NO} 2	10Hz≤f≤100kHz		110	0.2	μVrms
Ripple rejection	Rrej2	$f = 120$ Hz, $13V \le V_{IN} 2 \le 23V$		50		dB
Regulator 3 ($V_{EN}2 = "L"$, V						
Output voltage 3	V ₀ 3	•	8.55	9.0	9.45	v
Dropout voltage	V _{DROP} 3			0.3	1.0	v
Line regulation	∆V _{OLN} 3	10.45V≤V _{IN} 2≤23V		20	100	mV
Load regulation	∠V _{OLD} 3	1mA≤I ₀ 3≤100mA		20	50	mV
Peak output current	I _{OP} 3		100	180		mA
Output short current	I _{OSC} 3			40		mA
Output on control voltage	V _{ENL} 2	V _O 3: On			0.4	v
Output off control voltage	V _{ENH} 2	V _O 3: Off	2.0		V _{IN} 2	v
Output "L"-level voltage	V ₀ 3 OFF	(),)) ())	2.0		0.2	v
Output noise voltage	V _{NO} 3	10Hz≤f≤100kHz		70	0.2	µVrms
Ripple rejection	Rrej3	$f = 120 \text{Hz}, 11 \text{V} \le \text{V}_{\text{IN}} 2 \le 23 \text{V}$		55		dB
Regulator 4 ($V_{EN}3 = "L"$, V	V _O 4: ON, V _{IN} 3 = 8	$1.0V, I_0 4 = 500 \text{mA}$				
Output voltage 4	V _O 4		4.75	5.0	5.25	v
Dropout voltage	V _{DROP4-1}			0.4	1.0	v
	V _{DROP4-2}	I ₀ 4 = 250mA		0.3	0.8	v
Line regulation	$\Delta V_{OLN}4$	6.25V≤V _{IN} 3≤23V		20	100	mV
Load regulation	∆V _{OLD} 4	5mA≤I ₀ 4≤500mA		30	150	тV
Peak output current	l _{op} 4	- ·	500	900		mA
Output short current	I _{OSC} 4			250		mA
Output on control voltage	VENL3	V _O 4: On			0.4	v
Output off control voltage	V _{ENH} 3	V ₀ 4; Off	2.0		V _{IN} 3	v
Output "L"-level voltage	V ₀ 4 OFF	-			0.2	v
Output noise voltage	V _{NO} 4	10Hz≤f≤100kHz		70		μVrms
Ripple rejection	Rrej4	$f = 120Hz, 7V \le V_{IN} 3 \le 23V$		60		dB
		μν- — ·				
Current dissipation 1	La	$I_{01}, I_{02}, I_{03}, I_{04} = 0$		11		mA
Current dissipation 1 Current dissipation 2	I _Q 1 I _Q 2	I_01 , I_02 , I_03 , $I_04 = 0$ $I_01 = 300$ mA, $I_02 = 150$ mA,		11 53		mA mA


Continued on next page.

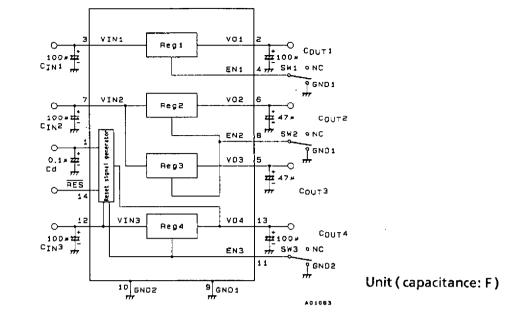
No.4371-2/6


Continued from preceding page.

Reset Circuit			min	typ	max	unit
"H"-level reset output voltage	VORH	$I_{\overline{ORH}} \approx 200 \mu$ A, CD pin open	4.83	4.98	5.13	v
"L"-level reset output voltage	VORL	$I_{\overline{ORL}} = 2 \text{ mA}$, CD pin shorted to ground (GND)		100	200	mV
Reset threshold voltage	V _{RT}	$I_0 4 = 5 m A$	3.95	4.2	4.45	v
Reset hysteresis voltage	Vhys	$I_0 4 = 5 m A$	50	100	200	mV
Reset output delay time	td	$Cd = 0.1 \mu F$	7.5	10	12.5	ms


Pin Assignments

Reset Operation


Block Diagram

CL: Current Limitter Circuit

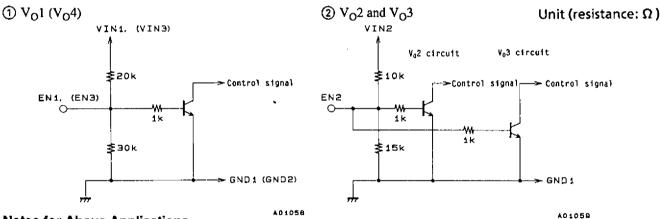
Unit (resistance: Ω)

Test Circuit

Function Table

The following table indicates conditions for operation with $V_{IN} \ge V_{IN} \ge V_{IN} \ge V_{IN} \ge V_{IN} \ge 0$ and $V_{IN} \ge 4V$.

EN1, EN2, EN3	V ₀ 1, V ₀ 2/V ₀ 3, V ₀ 4		
н	L		
L	Н		


① Within the table H of EN indicates an H level or open and L indicates an L level.

② H of V_O in the table indicates an output on voltage while L indicates an output off voltage.

(3) All output voltages corresponding to all EN locations are controlled independently.

(EN1 \rightarrow V₀1, EN2 \rightarrow V₀2 and V₀3, EN3 \rightarrow V₀4)

EN (On/Off Control) Input Equivalent Block Diagram

Notes for Above Applications

- (1) GND1 and GND2 should be at same electric potential; since these are connected to the substrate of the LA5607, the lowest possible electric potential should be used. (If the electric potential of GND1 and GND2 differ, performance characteristics of the LA5607 can not be guaranteed.)
- (2) Rise and fall times for $V_{IN}1$, $V_{IN}2$ and $V_{IN}3$ should be unified and concerning these pins operating in an open-circuit state or connected to the ground state is forbidden.
- (3) When V_{IN}1 and V_{IN}2 are open or lower than the required value, V₀1 to V₀4 are forced off for the IC's protection.
- ④ Use output capacitors C_{OUT}1 and C_{OUT}4 rated at 100 μF or more and C_{OUT}2 and C_{OUT}3 rated at 47 μF or more. To prevent oscillation at low temperature, be sure to use less temperature sensitive capacitors.
- (5) Use delay capacitor Cd which has little change in capacity caused by temperature, such as a tantalum capacitor.
- (6) In order to provide stable operation, C_{IN}1 to C_{IN}3 and C_{OUT}1 to C_{OUT}4 should be mounted as close to the LA5607 as possible.

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.