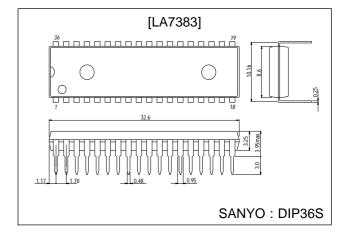


NTSC Video Signal Processing LSI for VCRs


Overview

The LA7383 combines luminance signal processing functions and color signal processing functions for NTSC VCRs on a single chip. Developed as a new-generation LSI for use in VCRs which offer increasingly higher image quality, the LA7383 offers all of the functions needed in order to realize improved picture quality in a dramatically compact 36-pin package, making this device suitable for a wide range of VCRs, from popularly priced models to high-end models.

Package Dimensions

unit: mm

3170-DIP36S

Features

- Includes all functions required for video signal processing in an NTSC VCR.
- Supports full HQ functions.

YNR on chip (standard).

CNR on chip (external components can be removed for passthrough operation).

Detail enhancer on chip.

Higher white clipping level (190%).

 In addition to the above, also provides the following functions for excellent image quality:

Edge compensation.

Double high-pass noise canceller \rightarrow permits wide-band noise reduction.

Linear phase-type image quality adjustment \rightarrow ideal image quality adjustment method, with no waveform distortion.

 By adopting the 1CCD method, one comb filter (glass) has become unnecessary.

Has a single 1H-delay CCD and a comb Y/C separation/YNR chroma crosstalk canceller function on chip.

- Automatic adjustment filter on chip.
 Y. I PF
- C: 3.58 MHz BPF, 4.21 MHz BPF, LPF (REC)
- No adjustment required for white and dark clipping levels.
 Extremely few peripheral components (about 60 components,
- excluding peripheral components for the CCD).fsc output can be used as clock for OSD IC.Crystal oscillator for the on-screen display circuit is not
- required.
 DCC circuit on chip.

Suppresses flicker at top of screen and reduces AM noise.

• High-speed AFC circuit.

Prevents color alteration and loss at top of screen when dubbing.

- · Head switching noise reduction circuit on chip.
- Smallest package in the industry.
- · Few components needed.
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company

Maximum Ratings at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Allowable power dissipation	Pdmax	Ta ≦ 65 °C	1070	mW
Operating temperature	Topr		-10 to +65	∘C
Storage temperature	Tstg		-40 to +150	∘C

Operating Conditions at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	V
Operating supply voltage range	V _{CC} op		4.8 to 5.2	V

Operating Characteristics at Ta = 25 $^{\circ}C,\,V_{\rm CC}$ = 5 V

Parameter	Symbol	Conditions	min	typ	max	Unit
[REC Mode Y]	,			, ,,		
Current consumption REC	IccR	When V _{CC} = 5 V (when there is no signal), measure sum of incoming currents at pins 29 and 24	95	120	145	mA
AGC adjustment	CAGC	V _{IN} = 1.0 Vp-p video signal, use VR33 to adjust T3 output to 0.5 Vp-p				
VCA control characteristics 1	VCA 1	Measure T3 output level when S9 is set to 2	0.48	0.5	0.52	Vp-p
VCA control characteristics 2	VCA 2	Measure T3 output level when S9 is set to 4	0.48	0.5	0.52	Vp-p
AGC adjustment voltage	V_{AGC}	Measure T33 DC voltage in above state	3.2	3.4	3.6	V
AGC detection voltage	V_{AD}	Measure T32 DC voltage in same manner	1.2	1.4	1.6	V
EE output level	V_{EE}	Measure T28A output level in same manner	0.95	1.0	1.05	Vp-p
AGC output 1	AGC 1	V _{IN} = 2.0 Vp-p video signal Measure T3 output level	500	520	540	mVp-p
AGC output 2	AGC 2	V _{IN} = 0.5 Vp-p video signal Measure T3 output level	460	480	500	mVp-p
AGC output 3	AGC 3	V _{IN} = 714 mVp-p LUMI, 572 mVp-p SYNC, measure T3 SYNC level	135	150	165	mVp-p
AGC output 4	AGC 4	V _{IN} = 714 mVp-p LUMI, 143 mVp-p SYNC, measure T3 SYNC level	90	100	110	mVp-p
Sync separation output level	V _{SYR}	V _{IN} = 1.0 Vp-p video signal, T26 output pulse peak value	4.0	4.2	4.4	Vp-p
Sync separation output pulse width	PW _{SYR}	V _{IN} = 1.0 Vp-p video signal, T26 output pulse width	4.0	4.3	4.6	μs
Sync separation output leading edge delay time	ΔT _{SYR}	V _{IN} = 1.0 Vp-p video signal, measure delay time of output SYNC versus input SYNC	0.8	1.0	1.2	μs
Sync separation threshold level	TH _{SYR}	Gradually attenuate the input level, measure input level at point when output pulse width widens 1 µs or more beyond PWSYR		-18	-14	dB
Sync tip level, pedestal level, white level measurement (REC)	L _{VOR}	Measure electric potential for each of the T28 video output sync tip, pedestal, and white peak, and assign the measured values to L _{SYN} , L _{PED} , and L _{WHI} , respectively				
Pseudo V insertion level (REC)	Δ V _{DR}	Measure T28 DC voltage when 5 V is applied to T27, and assign the measured value to L_{VDR} and calculate the difference with L_{SYN} $\Delta V_{DR} = L_{SYN} - L_{VDR}$		0	+80	mV
Pseudo H insertion level (REC)	Δ H _{DR}	Measure T28 DC voltage when 2.5 V is applied to T27, and assign the measured value to L_{HDR} and calculate the difference with L_{PED} ΔH_{DR} = L_{PED} $-L_{HDR}$	-200	-100	0	mV

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
White insertion level (REC)	Δ W _{HR}	Measure T28 DC voltage when 1.3 V is applied to T27, and assign the measured value to L_{WHR} and calculate the difference with LW_{HI} $\Delta W_{HR} = LW_{HI} - L_{WHR}$	40	140	240	mV
VCA detection voltage	VVCA	Measure T8 DC voltage	2.80	2.95	3.10	V
Comb filter adjustment		V _{IN} = standard multiburst signal 1 Vp-p and S30 = off, adjust so that the 3.58 MHz component at T21 is at a minimum				
Y-comb characteristics	GY-Comb	Measure the chroma level at T2 with a spectrum analyzer, V_{IN} = standard chroma noise test signal 1 Vp-p and S30 = off			-25	dB
C-comb characteristics	GC-Comb	V _{IN} = white 50% + CW 3.0 MHz			-25	dB
REC YNR operation EP/LP (1)	VR-YNR1	Measure the YNR addition level at T2 with V_{IN} = standard color bar signal 1 Vp-p and S30 = off	10	12	14	mV
REC YNR operation EP/LP (2)	VR-YNR2	Measure the YNR addition level at edit mode T2 with V_{IN} = standard color bar signal 1 Vp-p and S30 = off	2	3	4	mV
Pre-CCD LPF frequency characteristics (1)	G _{PFIL1}	Input a standard multiburst signal (1 Vp-p) and measure the 4 MHz response for 500 kHz at T11	-0.5	0	+0.5	dB
Pre-CCD LPF frequency characteristics (2)	G _{PFIL2}	10 MHz response for 500 kHz at T11 when V _{IN} = standard multiburst signal 1 Vp-p and S30 = off	-10	-8	-6	dB
3MLPF frequency characteristics (1)	G _{3MLP1}	1 MHz response for 500 kHz at T2 when V _{IN} = standard multiburst signal 1 Vp-p and S30 = off	-0.5	0	+0.5	dB
3MLPF frequency characteristics (2)	G _{3MLP2}	2 MHz response for 500 kHz at T2 when V _{IN} = standard multiburst signal 1 Vp-p and S30 = off	-1	0	+1	dB
3MLPF frequency characteristics (3)	G _{3MLP3}	3 MHz response for 500 kHz at T2 when V _{IN} = standard multiburst signal 1 Vp-p and S30 = off	-10	-8	-6	dB
3MLPF frequency characteristics (4)	G _{3MLP4}	3.58 MHz response for 500 kHz at T2 when V _{IN} = standard multiburst signal 1 Vp-p and S30 = off			-30	dB
3MLPF frequency characteristics (5)	G _{3MLP5}	4.2 MHz response for 500 kHz at T2 when V _{IN} = standard multiburst signal 1 Vp-p and S30 = off			-15	dB
FM modulator output level	V _{FM}	No input, use VR36 to adjust output frequency to 4 MHz, measure output level	0.8	1.0	1.2	Vp-p
FM modulator secondary distortion	H _{MOD}	Ratio of 8 MHz component to 4 MHz in the above state		-40	-35	dB
FM modulator modulation sensitivity	S _{MOD}	Measure amplitude of change in output frequency when 2.6 V DC or 3.1 V DC is applied to T3, 2 x (f3.1 – f2.6)		2.0	2.4	MHz/V
FM modulator linearity	L _{MOD}	Measure output frequency when 2.85 V DC applied to T3, f2.85 $L_{MOD} = \frac{f2.85 - (f3.1 + f2.6)/2}{f3.1 - f2.6} \times 100$	-3	0	+2	%
1/2 f _H carrier shift 1	C _{S1}	Measure amplitude of change in output frequency when SW35B is from on to off and SW35A is off	6.8	7.8	9.5	kHz
1/2 f _H carrier shift 2	C _{S2}	Measure amplitude of change in output frequency when SW35A is on and SW35B is switch from on to off	6.8	7.8	9.5	kHz
Emphasis gain	G _{EMP}	V _{IN} = 0.5 mVp-p 10 kHz sine wave Measure ratio of levels of input and output amplitude at T4	-0.5	0	+0.5	dB

Continued from preceding page.

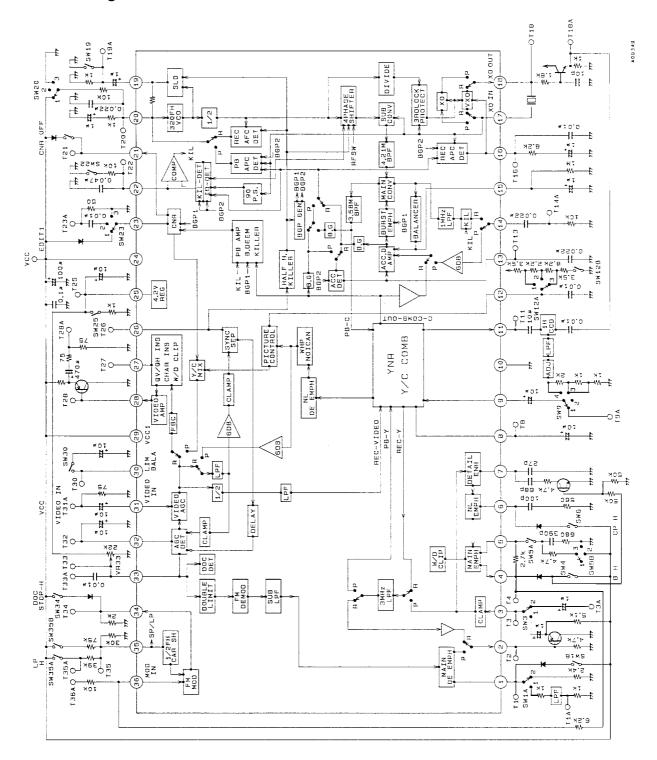
Parameter	Symbol	Conditions	min	typ	max	Unit
Detail enhancer characteristics (1)	G _{ENH1}	$V_{\mbox{\footnotesize{IN}}}$ = 158 mVp-p 2 MHz sine wave Measure ratio of levels of T4 and T3, difference with $G_{\mbox{\footnotesize{EMP}}}$	1.6	1.9	2.6	dB
Detail enhancer characteristics (2)	G _{ENH2}	V_{IN} = 50 mVp-p 2 MHz sine wave Measure ratio of levels of T4 and T3, difference with G_{EMP}	3.1	4.1	5.1	dB
Detail enhancer characteristics (3)	G _{ENH3}	$V_{\mbox{\scriptsize IN}}$ = 15.8 mVp-p 2 MHz sin wave Measure ratio of levels of T4 and T3, difference with $G_{\mbox{\scriptsize EMP}}$	5.3	6.3	7.3	dB
Detail enhancer characteristics (4)	G _{ENH4}	V_{IN} = 15.8 mVp-p 2 MHz sine wave Measure output amplitude at T4 in edit mode, difference with G_{EMP}	2.9	3.9	4.9	dB
Nonlinear emphasis characteristics (1)	G _{NLEMP1}	V_{IN} = 500 mVp-p 2 MHz Measure ratio of levels of T4 and T3, difference with G_{EMP}	0.5	1.4	2.3	dB
Nonlinear emphasis characteristics (2)	G _{NLEMP2}	V _{IN} = 158 mVp-p 2 MHz Measure ratio of levels of T4 and T3, difference with G _{EMP}	2.6	3.8	5.2	dB
Nonlinear emphasis characteristics (3)	G _{NLEMP3}	V _{IN} = 50 mVp-p 2 MHz Measure ratio of levels of T3 and T4, difference with G _{EMP}	4.9	6.4	7.9	dB
Main linear emphasis characteristics (1)	G _{ME1}	V _{IN} = 50 mVp-p 500 kHz sine wave Measure ratio of levels of T4 and T3, difference with G _{EMP}	4.9	5.2	5.5	dB
Main linear emphasis characteristics (2)	G _{ME2}	V _{IN} = 50 mVp-p 2 MHz Measure ratio of levels of T4 and T3, difference with G _{EMP}	13.1	13.6	14.1	dB
Detail enhancer US mode characteristics (1)	G _{ENHS1}	Measure the amplitude at T4 when V _{IN} = 15.8 mVp-p 2 MHz sine wave; compare level with G _{EMP}	2.9	3.9	4.9	dB
Detail enhancer US mode characteristics (2)	G _{ENHS2}	Measure the amplitude at T4 when V _{IN} = 15.8 mVp-p 2 MHz sine wave in edit mode; compare level with G _{EMP}	0.7	1.7	2.7	dB
White clipping level	L _{WC}	V _{IN} = 500 mVp-p white 100% video Measure white clipping level at T4	186	193	200	%
Dark clipping level	L _{DC}	V _{IN} = 500 mVp-p white 100% video Measure dark clipping level at T4	- 50	-45	-40	%
[PB Mode Y]						
Current consumption PB	IccP	Incoming currents at pins 29 and 24 when $V_{\rm CC} = 5.0 \ { m V}$	125	155	185	mA
Dropout compensation period	T _{DOC}	T33A: 4 MHz, 300 mVp-p sine wave T3A: 0.5 Vp-p video signal T33A: time from when input went to 0 until T28A output returned	0.6		1.0	ms
FM demodulation voltage	V _{DEM4}	V _{IN} = 300 mVp-p, f = 4 MHz, output voltage	0.9	1.05	1.15	V
FM demodulation sensitivity	S _{DEM}	V_{IN} = 300 mVp-p, f = 2 MHz, V_{DEM2} V_{IN} = 300 mVp-p, f = 6 MHz, V_{DEM6} Calculate S_{DEM} = (V_{DEM2} – V_{DEM6})/4		0.14	0.17	V/MHz
FM demodulation linearity	L _{DEM}	$L_{DEM} = \frac{V_{DEM4} - (V_{DEM2} + V_{DEM6})/2}{V_{DEM2} - V_{DEM6}} \times 100$	-3.5	0	+3.5	%
Carrier leakage	CL	V _{IN} = 300 mVp-p, f = 4 MHz Ratio between 4 MHz component of T1 and S _{DEM}		-40	-35	dB
Noncorrelation detection level	V _{CORR}	V _{IN} = 500 mVp-p video signal (ramp waveform)		22		IRE
PB YNR characteristics LP/EP (1)	GP-YNR1	V _{IN} = 500 mVp-p noise test signal –30 dB S/N difference with S6 on/off	2.5			dB
PB YNR characteristics LP/EP (2)	GP-YNR2	V _{IN} = 500 mVp-p noise test signal –30 dB S/N difference with EDIT on/off; pin 36 low	1.5			dB

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
Playback through gain	G _{PB}	Apply $V_{\rm IN}$ = 0.5 Vp-p video signal to pin 3, and determine ratio between pin 28 output level and input level	4.5	6.0	7.5	dB
Dropout detection (feedback) level	L _{DOC}	T33A: 4 MHz, 300 mVp-p sine wave T3A: 0.5 Vp-p video signal Measure input signal level when T33A signal drops momentarily and T28A output goes to 0	30	40	50	mVp-p
Nonlinear de-emphasis characteristics (1)	GNL _{DEEM1}	N _{IN} = white 50% video + sine wave f = 2 MHz, 158 mVp-p Measure I/O response, and assign output level described above as 0 dB	-6.0	-5.0	-4.0	dB
Nonlinear de-emphasis characteristics (2)	G _{NLDEEM2}	f = 2 MHz, 50 mVp-p	-9.0	-8.0	-7.0	dB
Double noise canceller characteristics (1)	G _{WNC1}	f = 2 MHz, 158 mVp-p	-2.3	-1.8	-1.3	dB
Double noise canceller characteristics (2)	G _{WNC2}	f = 2 MHz, 50 mVp-p	-6.0	-5.0	-4.0	dB
Double noise canceller characteristics (3)	G _{WNC3}	f = 2 MHz, 15.8 mVp-p	-10.5	-9.0	-7.5	dB
Double noise canceller characteristics (4)	G _{WNC4}	f = 3.58 MHz, 158 mVp-p	-2.0	-1.5	-1.0	dB
Double noise canceller characteristics (5)	G _{WNC5}	f = 3.58 MHz, 50 mVp-p	- 5.1	-4.1	-3.1	dB
Double noise canceller characteristics (6)	G _{WNC6}	f = 3.58 MHz, 15.8 mVp-p	-10.5	-8.5	-7.0	dB
PIC-CTL hard response characteristics (1)	G _{PH1}	f = 1 MHz, 158 mVp-p	3.5	4.5	5.5	dB
PIC-CTL hard response characteristics (2)	G _{PH2}	f = 2 MHz, 158 mVp-p	7	8	9	dB
PIC-CTL soft response characteristics (1)	G _{PS1}	f = 1 MHz, 158 mVp-p	-5.5	-4.5	-3.5	dB
PIC-CTL soft response characteristics (2)	G _{PS2}	f = 2 MHz, 158 mVp-p	-9	-8	-7	dB
PIC-CTL center response characteristics	G _{PC}	f = 2 MHz, 158 mVp-p	1.0	1.5	2.0	dB
DOC loop gain Y	G _{DOC}	T33A: 4 MHz, 300 mVp-p sine wave T3A: 0.5 Vp-p video signal I/O response 5H after instant when input at T33A went to 0	-1.0	0	+1.0	dB
Sync tip level, pedestal level, white level measurement (PB)	L _{VOR}	With V_{IN} = white 100% 0.5 Vp-p Measure electric potential for each of the pin 28 video output sync tip, pedestal, and white peak, and assign the measured values to L_{SYN} , L_{PED} , and L_{WHI} , respectively		_		
Pseudo V insertion level (PB)	ΔV _{DP}	Measure pin 28 DC voltage when 5 V is applied to pin 26, and assign the measured value to L_{VDP} , and calculate the difference with L_{SYN} Δ V_{DP} = L_{SYN} – L_{VDP}	-80	0	+80	mV
Pseudo H insertion level (PB)	Δ H _{DP}	Measure pin 28 DC voltage when 2.5 V is applied to pin 26, and assign the measured value to L_{HDP} , and calculate the difference with L_{PED} $\Delta H_{DP} = L_{PED} - L_{HDP}$	-200	-100	0	mV
White insertion level (PB)	ΔW _{HP}	Measure pin 28 DC voltage when 1.3 V is applied to pin 26, and assign the measured value to L_{WHP} , and calculate the difference with L_{WHI} $\Delta W_{HP} = L_{WHI} - L_{WHP}$	40	140	240	mV
Sync separation output level	V _{SYP}	V _{IN} = 0.5 Vp-p video signal Pin 26 output pulse peak value	4.0	4.2	4.4	Vp-p

Continued from preceding page.

		1				
Parameter	Symbol	Conditions	min	typ	max	Unit
Sync separation output pulse width	PW _{SYP}	V _{IN} = 0.5 Vp-p video signal Pin 26 output pulse width	4.0	4.3	4.6	μs
Sync separation output leading edge delay time	Δ T _{SYP}	$V_{\mbox{\footnotesize{IN}}}$ = 0.5 Vp-p video signal, measure delay time of output SYNC versus input SYNC	1.4	1.6	1.8	μs
[REC Mode Chroma]	•		•			•
REC chroma Y/C separation output level	V _{OR-21}	V _{IN} = standard color bar signal (1 Vp-p) Measure burst level at T21	170	220	270	mVp-p
REC chroma low-band conversion output level	V _{OR-14}	V _{IN} = standard color bar signal (1 Vp-p) Measure burst level at T14A	230	330	430	mVp-p
Burst emphasis amount	G _{BE}	V _{IN} = standard color bar signal (1 Vp-p) Ratio of burst level at T14A when S35A is off (SP/EP) and on (LP)	5.5	6.0	6.5	dB
VXO oscillation level	V _{VXO-R}	V _{IN} = standard color bar signal (1 Vp-p), measure T18 output amplitude (with an FET probe)	360	450	540	mVp-p
REC ACC characteristics 1	ACC _{R1}	V _{IN} = standard color bar signal (1 Vp-p), input +6 dB chroma signal level only, measure T14A burst level, and calculate ratio with V _{OR-14}		+0.2	+0.5	dB
REC ACC characteristics 2	ACC _{R2}	V _{IN} = standard color bar signal (1 Vp-p), input –6 dB chroma signal level only, measure T14A burst level, and calculate ratio with V _{OR-14}	-0.5	-0.1		dB
REC ACC killer input level	V _{ACCK-ON}	V _{IN} = standard color bar signal (1 Vp-p), lower the chroma signal, and measure the input burst level at the point where output at T14A ceases, and calculate the ratio with the standard input level	-30	-27	-24	dB
REC ACC killer output level	VO _{ACCK}	Use a spectrum analyzer to measure the output level at T14A in the killer state described previously; ratio with V _{OR-14}		-60	-50	dB
Input level for REC ACC killer return	V _{ACCK} -OFF	Starting from the killer state described previously, gradually raise the input chroma level and measure the input burst level when output is generated at T14A and calculate the ratio with the standard input level	-24	–21	-18	dB
VXO control sensitivity	S _{VXO}	Measure the pin 16 DC voltage when a standard color bar signal (1 Vp-p) is input V_O Measure the frequency at T18A when V_O is applied to pin 16 from the external power supply f_1 Measure the frequency at T18A when V_O + 10 mV is applied to pin 16 f_2 $S_{VXO} = \frac{f_2 - f_1}{10} \text{ Hz/mV}$	3.3	4.9	7.5	Hz/mV
REC APC pull-in range 1	∆ fapc1	Input a 50% white signal overlapping with a 3.5795 MHz, 300 mVp-p continuous wave. After confirming that there is output at T14A, increase the frequency of the CW until the output at T14A stops, and then gradually reduce the frequency until output appears again at T14A; that CW frequency is f_1 . $\Delta f_{APC1} = f_1 - 3579545$ (Hz)	350	440		Hz
REC APC pull-in range 2	Δ f _{APC2}	In the same manner, reduce the frequency of the CW until the output at T14A stops, and then gradually increase the frequency until output appears again at T14A; that CW frequency is f_2 . $\Delta f_{APC2} = f_2 - 3579545$ (Hz)		-900	-350	Hz
BGP delay time for APC ACC	t _D (N)	Input a standard color bar signal overlapping with a 3.98 MHz, 300 mVp-p continuous wave, and measure waveforms at T26 and T16.		4.8		μs

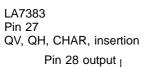

Continued from preceding page.

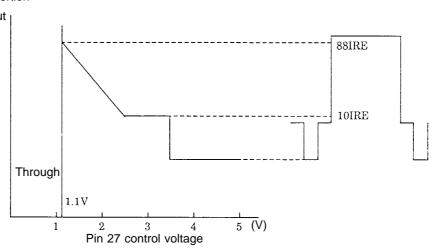
Parameter	Symbol	Conditions	min	typ	max	Unit
BGP pulse width for APC ACC	t _W (N)	T15 (w) TW (N) A00340		2.5		μs
REC AFC pull-in range 1	Δf _{AFC1}	Input a string of pulses (negative polarity) at 286 mV, 15.7 kHz with a width of 5 μ s. After increasing the frequency of the pulse string until the waveform at pin 20 is disrupted, then reduce the frequency until the waveform at pin 20 is normal again; that pulse string frequency is f ₁ T20 A00341 $\Delta f_{AFC1} = f_1 - 15.734$ (kHz)	+1.0	+7.0		kHz
REC AFC pull-in range 2	Δ f _{AFC2}	In the same manner, after reducing the frequency of the pulse string until the waveform at pin 20 is disrupted, then increase the frequency until the waveform at pin 20 is normal again; that pulse string frequency is f_2 $\Delta f_{AFC2} = f_2 - 15.734$ (kHz)		-6.3	-1.0	kHz
[PB Mode Chroma]						
PB chroma video output level	Vop-28	In PB, SP mode, input a continuous wave from T14A a chroma signal (SP mode, burst 50 mVp-p) that underwent low-band conversion from a chroma noise test signal. Input a 50% white signal from T3A and measure the T28A burst level	210	260	310	mVp-p
PB chroma pin 21 output level	V _{op} -21	Measure the T21 burst level under the same conditions as for Vop-28	170	200	230	mVp-p
PB ACC characteristics 1	ACC _{P1}	Input the input chroma level at +6 dB under the same conditions as for Vop-28 and measure the T21 burst level, and calculate the ratio with Vop-21		+0.5	+0.8	dB
PB ACC characteristics 2	ACC _{P2}	Input the input chroma level at –6 dB under the same conditions as for Vop-28 and measure the T21 burst level, and calculate the ratio with Vop-21	-0.5	-0.2		dB
PB killer input level	V _{ACK-P}	Lower the input chroma level under the same conditions as for Vop-28 and measure the input burst level at the point where T21 chroma output ceases. (Calculate ratio with standard input of 50 mVp-p)	- 55		-40	dB
PB killer chroma output level	V _{OACK-P}	Use a spectrum analyzer to measure the T28 chroma output level in the killer state described previously. Calculate ratio with Vop-28.		-44	-40	dB
PB main converter carrier leak	C _{LP}	Monitor T28A with a spectrum analyzer under the same conditions as for Vop-28 and calculate the ratio between the 3.58 MHz component and the 4.21 MHz carrier leak component.		-40	-33	dB
Burst de-emphasis amount	G _{BD}	From T14A, input a 629 kHz 50 mVp-p continuous wave; from T3A, input a 50% white signal, and calculate the ratio between the output level during the T21 burst interval and the output level during other intervals	-4.35	-4.6	-4.85	dB
PB XO output level	V _{XO-P}	In PB mode, measure the T18 output level with an FET probe	480	610	750	mVp-p

Continued from preceding page.

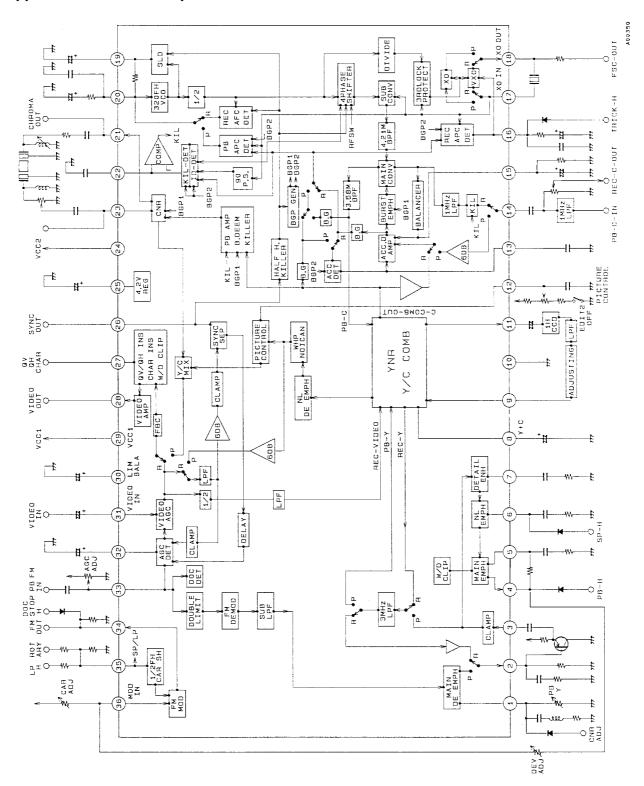
Parameter	Symbol	Conditions	min	typ	max	Unit
PB XO oscillation frequency variation	Δ f _{XO}	In PB mode, measure the frequency at T18f $\Delta f_{XO} = f - 3579545$ (Hz)	-7	0	+7	Hz
SLD detection current 1	I _{SLD1}	In PB mode, with S20: 3 and S19: off, input a 4 MHz 300 mVp-p continuous wave from T33A, input a 50% white signal from T3A, and measure the wave peak at T19A	110	160	210	μА
SLD detection current 2	I _{SLD2}	In PB mode, with S20: 3 and S19: off, input a 4 MHz 300 mVp-p continuous wave from T33A, input a 50% white signal from T3A, and measure the wave peak at T19A	110	160	210	μΑ
CNR characteristics	C _{NR}	SW21 → 2: from T14A SW23 → 3: input chroma signal that is a chroma noise test signal that underwent low-band conversion (SP mode, burst 50 mVp-p) PB mode: input a 50% white signal from T3A and measure the chroma level at T28	230	290	350	mV _{P-p}
US switch operation check	US	SW21 → 2: from T14A SW23 → 4: input chroma signal that is a chroma noise test signal that underwent low-band conversion (SP mode, burst 50 mVp-p) PB mode; input a 50% white signal from T3A and measure the chroma level at T28	450	560	670	mVp-p
EDIT1	EDIT	SW21 → 2: from T14A SW23 → 1: input chroma signal that is a chroma noise test signal that underwent low-band conversion (SP mode, burst 50 mVp-p) PB mode; input a 50% white signal from T3A and measure the chroma level at T28	450	560	670	mV _{P-P}
CNR-OFF	CNR(OFF)	SW21 → 1: from T14A SW23 → 3: input chroma signal that is a chroma noise test signal that underwent low-band conversion (SP mode, burst 50 mVp-p) PB mode; input a 50% white signal from T3A and measure the chroma level at T28	450	560	670	mV _{P-P}
CNR amp gain	G _{CNR}	V _{IN} = 100 mVp-p 3.58 MHz CW	9.5	10.5	11.5	dB
4.2 V regulator operation confirmation (1)	V42(R)	SW25 $ ightarrow$ 1 measure T25 DC level REC mode		4.2		V _{DC}
4.2 V regulator operation confirmation (2)	V42(P1)	SW25 → 1 measure T25 DC level PB mode		4.2		V _{DC}
4.2 V regulator operation confirmation (3)	V42(P2)	$SW25 \rightarrow 2$ measure T25 DC level PB mode		4.2		V _{DC}

Test Circuit Diagram


Unit (resistance: Ω , capacitance: F)


LA7383 Mode Table

Mode	Edit	Y/C separation by comb filter Y (REC)	y/C separation by comb filter C (REC)	1/2 f _H shift (REC)	Burst emphasis (REC)	NL emphasis (REC)	YNR (REC)	YNR (PB)	High-pass, NC double type (PB)	CNR (PB)	PIC.CTL (PB)	Detail enhancer (REC)	nhancer (C)	APC. DET. (PB)	Crosstalk correlation switching (PB)
	Off (normal)	0	×	×	0	×	K0.5 LIM 3IRE	K0.2 LIM 5IRE	0	0	o(variable)	Strong	(US) Medium	Before comb	0
SP	On (1) pin 23 H	0	×	×	0	×	×	×	0	X(off)	0	Medium	Weak	Before	0
	On (2) pin 12 H	0	×	×	0	×	×	×	0	0	Mid-point	Medium	Weak	Before	0
	Off (normal)	0	0	0	×	0	K0.65 LIM SIRE	K0.5 LIM 111RE	0	0	0	Strong	Medium	After comb	×
4	On (1) pin 23 H	0	×	0	×	0	K0.25 LIM 3	K0.2 LIM 5	0	×	0	Medium	Weak	After	×
	On (2) pin 12 H	0	×	0	×	0	K0.25 LIM 3	K0.2 LIM 5	0	0	Mid-point	Medium	Weak	After	×
	Off (normal)	0	0	0	0	0	K0.65 LIM SIRE	K0.5 LIM 5	0	0	0	Strong	Medium	After comb	×
П	On (1) pin 23 H	0	×	0	0	0	K0.25 LIM 3	K0.2 LIM 5	0	×	0	Medium	Weak	After	×
	On (2) pin 12 H	0	×	0	0	0	K0.25 LIM 3	K0.2 LIM 5	0	0	Mid-point	Medium	Weak	After	×


Control Pin Function Chart

Pin No.	L	M	Н
Pin 4 R/P switching	Open REC mode		Over 3.8 V PB mode
Pin 6 SP/EP switching	Open EP mode		Over 3.9 V SP mode
Pin 12 EDIT2 PIC-CTL	2 V to 2.5 V PIC-CTL SOFT	2.5 V to 3 V PIC-CTL HARD	Over 3.6 V EDIT2 on
Pin 16 Special playback switching		Open Before comb in SP	Over 3.5 V (over 200 μA) After comb in SP
Pin 23 EDIT1 US	Under 1.5V US specifications	Open	Over 2.5 V EDIT1 on
Pin 27 QV, QH, CHAR		Refer to pin 27, QV, QH, CHAR, insertion diagram	
Pin 34 DOC STOP control	Open Normal mode		Over 3.9 V DOC STOP
Pin 35 ROTARY pulse LP switching	SW30 Tape speed	0.45V 0.75V 1.55V 1 L H SP or EP mode	L H
Pin 21 CNR off			Over 3.0 V CNR off

Application Circuit Examples

Unit (resistance: Ω , capacitance: F)

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.