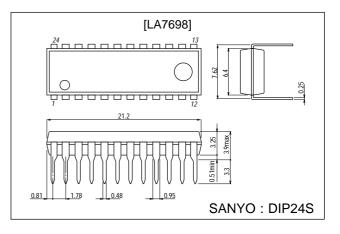
Monolithic linear IC

LA7698

Color-Difference Signal Correction IC for Color TVs

Overview

The LA7698 performs flesh-tone correction and green enhancement for color TV color-difference signals, and includes a color limiter function that prevents color saturation on the screen and color noise reduction (CNR) circuitry that eliminates color- difference output noise.


Functions and Features

- Flesh-tone correction, green enhancement, color limiter and CNR.
- The center axis of flesh-tone correction can be adjusted.
- Because green detection is performed through R-Y and B-Y detection, OSD green is not enhanced.
- The demo mode switch makes it possible to turn flesh-tone correction and green enhancement on and off for the left and right sides of the screen independently.
- The effectiveness of CNR can be adjusted through an external capacitor.

Package Dimensions

unit: mm

3067-DIP24S

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		13	V
Allowable power dissipation	Pd max	Ta ≦ 65°C	700	mW
Operating temperature	Topr		-15 to +65	°C
Storage temperature	Tstg		–55 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		9	V
Operating supply voltage range	V _{CC} op		8 to 10	V

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

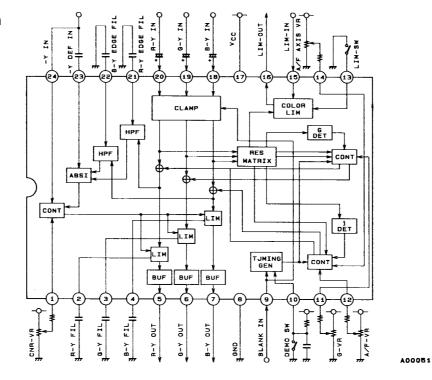
SANYO Electric Co.,Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Operating Characteristics at Ta = 25°C, $V_{\rm CC}$ = 9 V

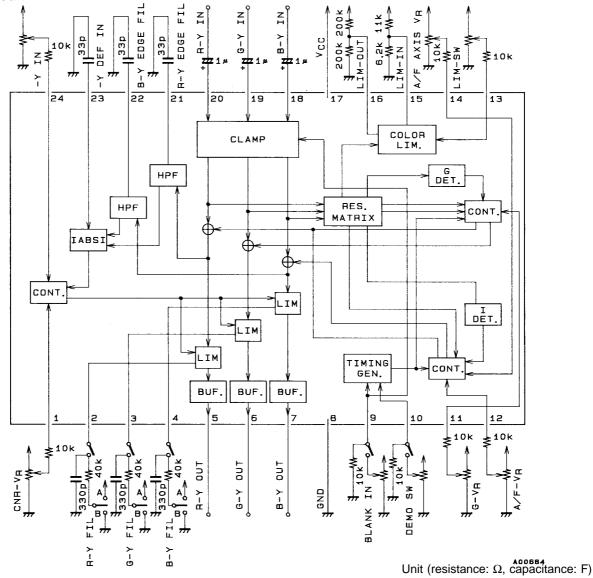
Parameter	Symbol	Conditions	min	typ	max	Unit	Note
Current consumption	I _{CC}		19	27	41	mA	*1,2
Output voltage	Vo	Pin 9 (H-BLK IN) = 2 V	5	5.25	5.5	V	*1,2
Output voltage difference	ΔVO	Pin 9 (H-BLK IN) = 2 V		0	50	mV	*1,2
Output voltage variation	ΔV_{O-H}	INPUT C = 1 µF	-1	-0.1	0	mV	*1,2
Input/output gain	G _O	INPUT = Sin : 100 kHz	-0.70	-0.35	-0.05	dB	*1,2
Input/output gain difference	Δ G _O	INPUT = Sin : 100 kHz		0	0.15	dB	*1,2
Frequency characteristics	Fo	Assuming 100 kHz as 0 dB, the frequency where a 3 dB decrease results	5			MHz	*1,2
Maximum output amplitude	Emax		4.1	4.7		Vp-p	*1,2
BLK threshold voltage	TH _{BLK}		1.0	1.4	1.8	V	*1,2
BLK minus allowable voltage	– V _{BL}		-0.7			V	*1,2
DEMO threshold voltage	TH _{DEMO}		3.5	3.7	3.9	V	*1,2
Color difference input voltage	V _{IN} , C-Y	Pin 9 (H-BLK IN) = 2 V	6.15	6.40	6.65	V	*1,2
Output voltage temperature characteristic	α V _O / α T	Pin 9 (H-BLK IN) = 2 V		0		mV/°C	*1,2
Variation for no green enhancement input	ΔV_{C-YG}	No input pin 11 0 V/9 V	-10	0	+10	mV	*1
Maximum green enhancement level	ΔV_{G-YGM}	P _{IN} = 227°, E _{B-Y} = 2 Vp-p, pin 11 = 9 V	200	225	245	mV	*1
	ΔV_{R-YGM}	P _{IN} = 227°, E _{B-Y} = 2 Vp-p, pin 11 = 9 V	-245	-225	-200	mV	*1
Green enhancement range + 1	ΔV_{G-YG+}	P _{IN} = 180°, E _{B-Y} = 2 Vp-p, pin 11 = 9 V	9	16	26	mV	*1
Green enhancement range + 2	Δ V _{R-YG+}	$P_{IN} = 180^{\circ}, E_{B-Y} = 2 \text{ Vp-p, pin } 11 = 9 \text{ V}$	-26	-16	-9	mV	*1
Green enhancement range – 1	Δ V _{C-YG-}	$P_{IN} = 270^{\circ}, E_{B-Y} = 2 Vp-p, pin 11 = 9 V$	5	10	18	mV	*1
Green enhancement range – 2	Δ V _{R-YG-}	$P_{IN} = 270^\circ$, $E_{B-Y} = 2$ Vp-p, pin 11 = 9 V	-18	-10	-5	mV	*1
Green enhancement starting amplitude	E _{B-YGS}	$P_{IN} = 227^{\circ}$, pin 11 = 9 V ΔV_{G-Y} , G = 5 mV	0.36	0.45	0.75	Vp-p	*1
G OSD variation during green enhancement	ΔVG_{OSD}	Only G-Y ± 2 V, pin 7 = 9 V		0	50	mV	*1
Flesh-tone correction voltage variation	ΔV_{C-YF}	No input pin 12 0 V/9 V	-10	0	+10	mV	*1
Flesh-tone correction phase	P _{AF-1}	P _{IN} = 120°, E _{B-Y} = 1 Vp-p, pin 14 = open, pin 12 = 9 V	117	120	123	deg	*1
	P _{AF-2}	P _{IN} = 105°, E _{B-Y} = 1 Vp-p, pin 14 = 1 V, pin 12 = 9 V	102	105	108	deg	*1
	P _{AF-3}	P _{IN} = 138°, E _{B-Y} = 1 Vp-p, pin 14 = 6 V, pin 12 = 9 V	135	138	141	deg	*1
Maximum correction level + 1	$\Delta V_{\text{B-Y FM+}}$	P _{IN} = 135°, E _{B-Y} = 1 Vp-p, pin 14 = open, pin 12 = 9 V	68	85	103	mV	*1
Maximum correction level + 2	$\Delta V_{\text{R-Y FM+}}$	P _{IN} = 135°, E _{B-Y} = 1 Vp-p, pin 14 = open, pin 12 = 9 V	21	26	31	mV	*1
Maximum correction level – 1	$\Delta V_{\text{B-Y FM-}}$	P _{IN} = 105°, E _{B-Y} = 1 Vp-p, pin 14 = open, pin 12 = 9 V	-120	-100	-80	mV	*1
Maximum correction level – 2	Δ V _{R-Y FM-}	P _{IN} = 105°, E _{B-Y} = 1 Vp-p, pin 14 = open, pin 12 = 9 V	-10	0	+10	mV	*1
Flesh-tone correction range + 1	Δ V _{B-Y F+}	$P_{IN} = 50^{\circ}$, $E_{B-Y} = 1 Vp-p$, pin 14 = open, pin 12 = 9 V	-10	0	+10	mV	*1
Flesh-tone correction range - 1	Δ V _{B-Y F-}	$P_{IN} = 200^{\circ}, E_{B-Y} = 1 Vp-p,$ pin 14 = open, pin 12 = 9 V	-10	0	+10	mV	*1
Flesh-tone correction range – 2	$\Delta V_{R-Y F-}$	P _{IN} = 200°, E _{B-Y} = 1 Vp-p, pin14 = open, pin 12 = 9 V	-10	0	+10	mV	*1
Flesh-tone correction starting amplitude	E _{B-Y FS}	P_{IN} = 105°, pin14 = open ΔV_{B-Y} , F = 5 mV	0.1	0.2	0.35	Vp-p	*1
Limiter red detection level	E _{B-Y RD}	P _{IN} = 104°, pin 13 = 9 V, pin 15 = open	2.6	3.0	3.4	Vр-р	*1
Limiter magenta detection level	E _{B-Y MD}	P _{IN} = 61°, pin 13 = 9 V, pin 15 = open	1.7	2.0	2.3	Vp-p	*1

Continued on next page.

Continued from preceding page.

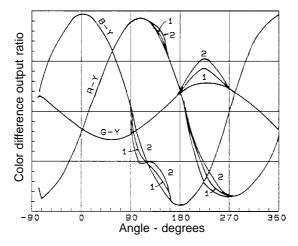

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Note
Tracking magenta detection	E _{B-Y MDT}	P _{IN} = 61°, pin 13 = 9 V, pin 15 = 3.4 V	2.9	3.3	3.7	Vр-р	*1
Limiter switch off voltage	V _{CL OFF}	P _{IN} = 61°, E _{B-Y} = 3 Vp-p, pin 15 = open	0.4	0.6	0.8	V	*1
Green enhancement release voltage	V _{GL} OPEN	pin 11 open level	6.8	7.0	7.2	V	*1
Flesh-tone correction release voltage	V _{FL OPEN}	pin 12 open level	6.8	7.0	7.2	V	*1
Flesh-tone phase release voltage	V _{FP OPEN}	pin 14 open level	3.3	3.5	3.7	V	*1
CNR-ON voltage variation	$\Delta V_{C-Y CNR}$	No input pin 1 0 V/9 V	-10	0	+10	mV	
Maximum limiter amount	R-Y	V _{CNR} = 9 V, pin 23 = GND, pin 24 = 7 V V2 (+100 μA) – V2 (–100 μA)	600	715	785	mV	
	G-Y	V _{CNR} = 9 V, pin 23 = GND, pin 24 = 7 V V3 (+100 μA) – V3 (–100 μA)	285	340	370	mV	
	B-Y	V _{CNR} = 9 V, pin 23 = GND, pin 24 = 7 V V4 (+100 μA) – V4 (–100 μA)	600	715	785	mV	
Minimum limiter amount	R-Y	V _{CNR} = 0 V, pin 23 = GND, pin 24 = 7 V V2 (+100 μA) – V2 (–100 μA)		0		mV	
	G-Y	V _{CNR} = 0 V, pin 23 = GND, pin 24 = 7 V V3 (+100 μA) – V3 (–100 μA)		0		mV	
	B-Y	V _{CNR} = 9 V, pin 23 = GND, pin 24 = 7 V V4 (+100 μA) – V4 (–100 μA)		0		mV	
Maximum limiter level	G _{R-Y} max	INPUT = 500 kHz, 2 Vp-p, V _{CNR} = 9 V, pin 23 = GND, pin 24 = 7 V, pin 1 = 9 V		-4.2		dB	
	G _{G-Y} max	INPUT = 500 kHz, 1 Vp-p, V _{CNR} = 9 V, pin 23 = GND, pin 24 = 7 V, pin 1 = 9 V		-3.5		dB	
	G _{B-Y} max	INPUT = 500 kHz, 2 Vp-p, V _{CNR} = 9 V, pin 23 = GND, pin 24 = 7 V, pin 1 = 9 V		-4.2		dB	
Minimum limiter level	G _{R-Y} min	INPUT = 500 kHz, 0.2 Vp-p, V _{CNR} = 0 V, pin 23 = GND, pin 24 = 7 V, pin 1 = 9 V		-0.5		dB	
	G _{G-Y} min	INPUT = 500 kHz, 0.1 Vp-p, V _{CNR} = 0 V, pin 23 = GND, pin 24 = 7 V, pin 1 = 9 V		-0.5		dB	
	G _{B-Y} min	INPUT = 500 kHz, 0.2 Vp-p, V _{CNR} = 0 V, pin 23 = GND, pin 24 = 7 V, pin 1 = 9 V		-0.5		dB	
Normal limiter level	G _{R-Y} typ	INPUT = 50 kHz, 2 Vp-p, V _{CNR} = open, pin 23 = GND, pin 24 = 7 V, pin 1 = 9 V		-1.2		dB	
	G _{G-Y} typ	INPUT = 50 kHz, 1 Vp-p, V _{CNR} = open, pin 23 = GND, pin 24 = 7 V, pin 1 = 9 V		-0.6		dB	
	G _{B-Y} typ	INPUT = 50 kHz, 2 Vp-p,V _{CNR} = open, pin 23 = GND, pin 24 = 7 V, pin 1 = 9 V		-1.2		dB	
Color edge detection sensitivity	ΔV_{SCE}	Voltage difference between open voltage of pins 21 and 22 and edge detection	±60	±85	±110	mV	
Y edge detection sensitivity	ΔV_{SYE}	Voltage difference between open voltage of pin 23 and edge detection	±130	±160	±190	mV	
Y level detection voltage	V _{-Y} min	No edge detection $V_{CNT} = 9 V$	0.9	1.2	1.5	V	
Y level detection voltage	V _{-Y} max	No edge detection $V_{CNT} = 9 V$	3.6	3.9	4.2	V	
Limiter level control	V _{LCNT1}	Control voltage at which limiter amount is 50 mV	4.5	4.75	5.0	V	
Limiter level control	V _{LCNT2}	Control voltage which is -50 mV from maximum limiter amount	7.0	7.25	7.5	V	
Color edge filter voltage	V _{EF} OPEN	Open DC voltage of pins 21 and 22	4.65	4.9	5.15	V	
-Y differential input voltage	V _{dY OPEN}	Open DC voltage of pin 23	3.7	3.9	4.1	V	
Limiter control voltage	V _{CNT} OPEN	Open DC voltage of pin 1	5.8	6.0	6.2	V	
Limiter filter voltage	V _{LF} OPEN	Open DC voltage of pins 2, 3 and 4	3.95	4.2	4.45	V	<u> </u>

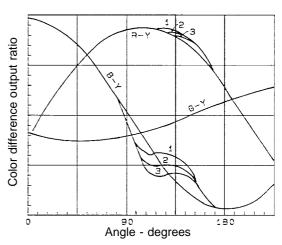
Notes: *1) When the CNR limiter level is at a minimum (pin 1 = 0 V)


*2) When both the green enhancement level and flesh-tone correction level are both at a minimum

 $(pin \ 11 = 0 \ V; pin \ 12 = 0 \ V)$

Block Diagram


Test Circuit



Note: All V_Rs are 10 $k\Omega$ variable resistors

Flesh-tone correction and green enhancement characteristics

Flesh-tone center adjustment

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1995. Specifications and information herein are subject to change without notice.