



# Low-Voltage/Low-Power Compander IC

### Overview

The LA8637M is a compander IC that was developed to improve audio quality in transceiver systems such as cordless telephones by expanding the dynamic range of the audio signal and suppressing noise. In addition to including both a compressor circuit that compresses with a compression ratio of 1/2 (logarithmic) and an expander with an expansion factor of 2 (logarithmic), the LA8637M also integrates the following functions on the same chip: an ALC preamplifier, a BTL amplifier, a data shaper for received data, a muting function and a standby function. Thus the LA8637M is optimal as the compander/system IC in cordless telephone products.

# **Applications**

• Cordless telephones

### **Functions**

Compressor

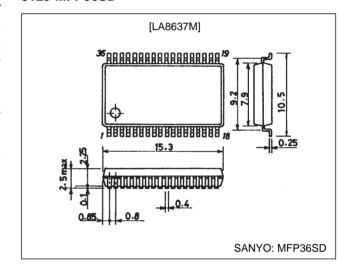
ALC preamplifier, preemphasis amplifier, limiter, transmission data input analog switch, filter buffer amplifier

- Expander
  - Filter buffer amplifier, de-emphasis amplifier, mute, BTL amplifier (100  $\Omega$  load)
- Level following data shaper (with hysteresis)
- · Standby mode

#### **Features**

- Easy implementation of transmission system and reception system base band signal processing
- Built-in BTL amplifier that supports mobile unit handsets
- · Standby function to support battery saving
- Low voltage operation:  $V_{CC\ OP} = 1.8$  to 6 V

### **Specifications**


Maximum Ratings at  $Ta = 25^{\circ}C$ 

| Parameter                   | Symbol              | Conditions | Ratings     | Unit |
|-----------------------------|---------------------|------------|-------------|------|
| Maximum supply voltage      | V <sub>CC</sub> max |            | 7           | V    |
| Allowable power dissipation | Pd max              | Ta ≤ 75°C  | 250         | mW   |
| Operating temperature       | Topr                |            | -20 to +75  | °C   |
| Storage temperature         | Tstg                |            | -40 to +125 | °C   |

# **Package Dimensions**

unit: mm

#### 3129-MFP36SD

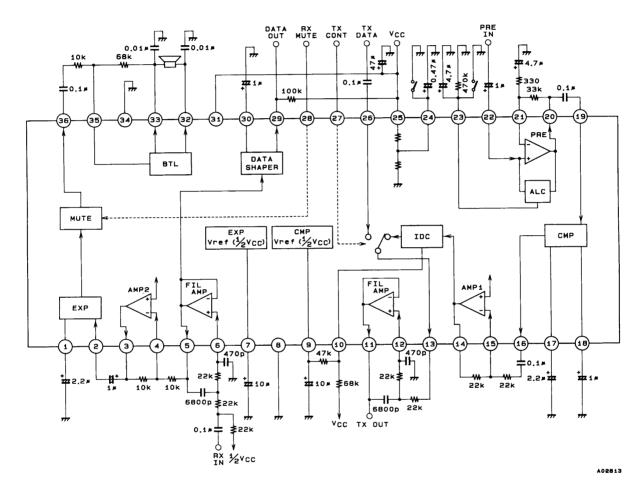


# LA8637M

# Operating Conditions at $Ta = 25^{\circ}C$

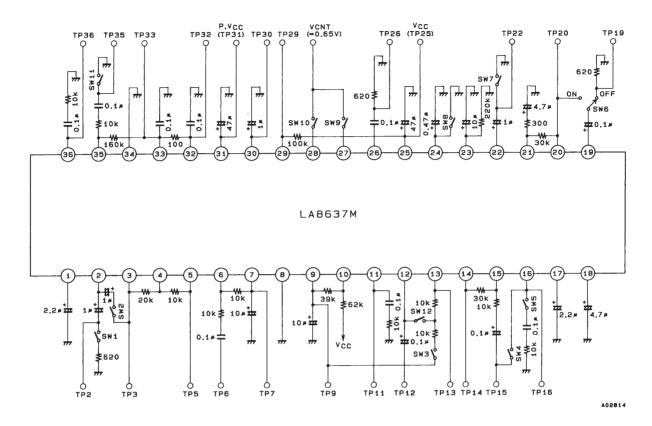
| Parameter                  | Symbol             | Conditions | Ratings  | Unit |
|----------------------------|--------------------|------------|----------|------|
| Recommended supply voltage | V <sub>CC</sub>    |            | 3        | V    |
| Operating supply voltage   | V <sub>CC OP</sub> |            | 1.8 to 6 | V    |

# Electrical Characteristics at $Ta=25^{\circ}C,\,V_{CC}$ = 3 $V,\,f$ = 1 kHz


| Parameter                                     | Symbol                      | Conditions                                                    | min  | typ  | max  | Unit  |  |
|-----------------------------------------------|-----------------------------|---------------------------------------------------------------|------|------|------|-------|--|
| Quiescent current                             | Icco                        | No signal                                                     | 5    | 8    | 12   | mA    |  |
| Standby current                               | I <sub>STBY</sub>           | No signal, standby mode (pin 24: low)                         | 0.8  | 1    | 1.2  | mA    |  |
| [Preamplifier]                                |                             |                                                               |      |      |      |       |  |
| Voltage gain                                  | $V_{GP}$                    | Vi = -60 dBV                                                  | 37   | 39   | 41   | dB    |  |
| Maximum voltage gain                          | V <sub>GP</sub> max         | Vi = -60 dBV                                                  |      | 50   |      | dB    |  |
| Total harmonic distortion                     | THD                         | Vi = -40 dBV, ALC: ON                                         |      | 0.3  | 1.0  | %     |  |
| Input conversion noise voltage                | V <sub>NI</sub>             | $Rg = 0 \Omega$                                               |      | 1.5  | 5    | μVrms |  |
| ALC level                                     | V <sub>ALC</sub>            | Vi = -40 dBV, ALC: ON                                         | 350  | 420  | 490  | mVrms |  |
| ALC range                                     | ALC                         | Until the THD from the ALC circuit becomes 1%                 | 35   | 40   |      | dB    |  |
| [Compressor] Vinrefc = -20 dBV =              | 0 dB, output:               | pin 16                                                        |      |      |      | 1     |  |
| Input impedance                               | rį                          |                                                               |      | 30   |      | kΩ    |  |
| Output voltage                                | Voc                         | Vin = Vinrefc = 0 dB                                          | -22  | -20  | -18  | dBV   |  |
| Gain error (1)                                | Gec1                        | Vin = -20 dB                                                  | -0.5 | 0    | +0.5 | dB    |  |
| Gain error (2)                                | Gec2                        | Vin = -40 dB                                                  | -1.0 | 0    | +1.0 | dB    |  |
| Total harmonic distortion                     | THD                         | Vin = 0 dB                                                    |      | 0.25 | 1.0  | %     |  |
| Output noise voltage                          | V <sub>NOC</sub>            | Rg = $620 \Omega$ , f = $20 \text{ Hz}$ to $20 \text{ kHz}$   |      | 0.15 | 1.0  | mVrms |  |
| Crosstalk                                     | СТ <sub>С</sub>             | RX-Vin = -20 dBV, 1 kHz BPF                                   |      | -75  | -60  | dB    |  |
| [Analog Switch]                               |                             |                                                               |      |      |      | 1     |  |
| Muting attenuation                            | ATT <sub>C</sub>            | Vin = -20 dB, 1 kHz BPF                                       | 60   | 75   |      | dB    |  |
| [Expander] Vinrefe = -20 dBV = 0              | dB                          |                                                               |      |      |      | 1     |  |
| Output voltage                                | Voe                         | Vin = Vinrefe = 0 dB                                          | -22  | -20  | -18  | dBV   |  |
| Gain error (1)                                | Gee1                        | Vin = -20 dB                                                  | -1.0 | 0    | +1.0 | dB    |  |
| Gain error (2)                                | Gee2                        | Vin = -30 dB                                                  | -1.5 | 0    | +1.5 | dB    |  |
| Total harmonic distortion                     | THD                         | Vin = 0 dB                                                    |      | 0.3  | 1.0  | %     |  |
| Output noise voltage                          | V <sub>NO</sub> e           | Rg = $620 \Omega$ , f = $20 \text{ Hz}$ to $20 \text{ kHz}$   |      | 13   | 80   | μVrms |  |
| Muting attenuation                            | A <sub>TT</sub> e           | Vin = 0 dB, 1 kHz BPF                                         | 60   | 75   |      | dB    |  |
| Crosstalk                                     | CTe                         | PRE AMP-Vin = -60 dBV, 1 kHz BPF                              |      | -95  | -80  | dB    |  |
| Maximum output voltage                        | V <sub>O</sub> max          | THD = 10%, $R_L$ = 10 kΩ                                      | 0.7  | 1.0  |      | Vrms  |  |
| [Limiter]                                     | •                           |                                                               |      |      |      | •     |  |
| Limiting voltage                              | $V_{L}$                     | $\Delta V = 0.6 \text{ V}$ (voltage between pin 9 and pin 10) | 0.27 | 0.3  | 0.33 | Vp-p  |  |
| [BTL Amplifier] Gain = 30 dB                  | •                           |                                                               |      |      |      | •     |  |
| Voltage Gain                                  | V <sub>PWR</sub>            | Vin = $-40$ dBV, R <sub>L</sub> = $100 \Omega$                | 27.5 | 29.5 | 31.5 | dB    |  |
| Total harmonic distortion                     | THD                         | Vin = $-40$ dBV, R <sub>L</sub> = $100 \Omega$                |      | 0.5  | 1.0  | %     |  |
| Maximum output power                          | P <sub>O</sub> max          | THD = 10%, R <sub>L</sub> = 100 Ω                             | 15   | 30   |      | mW    |  |
| Maximum output voltage                        | V <sub>O</sub> max          | THD = 10%, R <sub>L</sub> = 620 Ω                             | 4.0  | 5.5  |      | Vp-p  |  |
| Output noise voltage                          | V <sub>NO</sub>             | $Rg = 0 \Omega$ , $R_L = 100 \Omega$                          |      | 120  | 800  | μVrms |  |
| [Compressor Low-Pass Filter]                  | •                           |                                                               |      |      |      | •     |  |
| Maximum output voltage                        | V <sub>O</sub> max          | THD = 1%, $R_L$ = 10 kΩ                                       | 450  | 550  |      | mVrms |  |
| [Expander Low-Pass Filter] V <sub>B</sub> = 1 | .5 V (V <sub>B</sub> : low- | pass filter bias voltage)                                     |      |      |      | •     |  |
| Maximum output voltage                        | V <sub>O</sub> max          | THD = 1%, $R_L$ = 10 $k\Omega$                                | 400  | 500  |      | mVrms |  |
| [Data Shaper]                                 |                             |                                                               |      |      |      |       |  |
| Duty                                          | D <sub>UTY</sub>            | Vin = −15 dBV                                                 | 45   | 50   | 55   | %     |  |
| Hysteresis                                    | W <sub>HYS</sub>            |                                                               | 45   | 70   | 100  | mV    |  |
| Output high level voltage                     | V <sub>OH</sub>             | $R_L = 100 \text{ k}\Omega$                                   | 2.8  |      |      | V     |  |
| Output low level voltage                      | V <sub>OL</sub>             | $R_L = 100 \text{ k}\Omega$                                   |      |      | 0.3  | V     |  |
| [Standby]                                     |                             |                                                               |      |      |      |       |  |
| Standby voltage                               | V <sub>ST</sub>             | Pin 24                                                        |      |      | 0.7  | V     |  |
| Standby current                               | I <sub>ST</sub>             | Pin 24 outflow current                                        |      |      | 30   | μA    |  |

Continued on next page.

### Continued from preceding page.


| Parameter                       | Symbol          | Conditions                             | min                 | typ | max  | Unit |
|---------------------------------|-----------------|----------------------------------------|---------------------|-----|------|------|
| [Digital Input Characteristics] |                 |                                        |                     |     |      |      |
| Input low level voltage         | V <sub>IL</sub> | Pins 27 and 28                         |                     |     | 0.65 | V    |
| Input high level voltage        | V <sub>IH</sub> | Pins 27 and 28                         | 0.6 V <sub>CC</sub> |     |      | V    |
| Input low level current         | I <sub>IL</sub> | Pins 27 and 28, V <sub>I</sub> = 0.2 V |                     |     | 100  | μA   |
| Input high level current        | I <sub>IH</sub> | Pins 27 and 28, $V_I = 2 V$            |                     |     | 5    | μA   |

# **Internal Equivalent Circuit Block Diagram**



Unit (resistance :  $\Omega$ , capacitance : F)

### **AC Test Circuit**



Unit (resistance :  $\Omega$ , capacitance : F)

### **Control Mode**

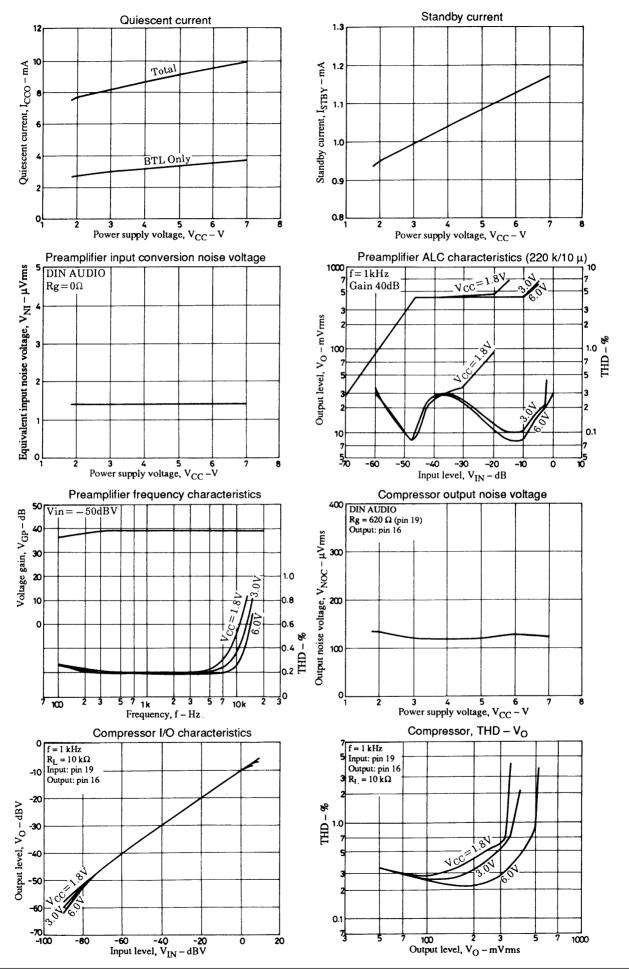
| Pin No. | Symbol  | State | Audio | Data |
|---------|---------|-------|-------|------|
| 27      | TX CONT | High  | 0     | _    |
| 21      | TA CONT | Low   | _     | 0    |
| 28      | RX MUTE | High  | 0     |      |
| 20      |         | Low   | Mute  |      |

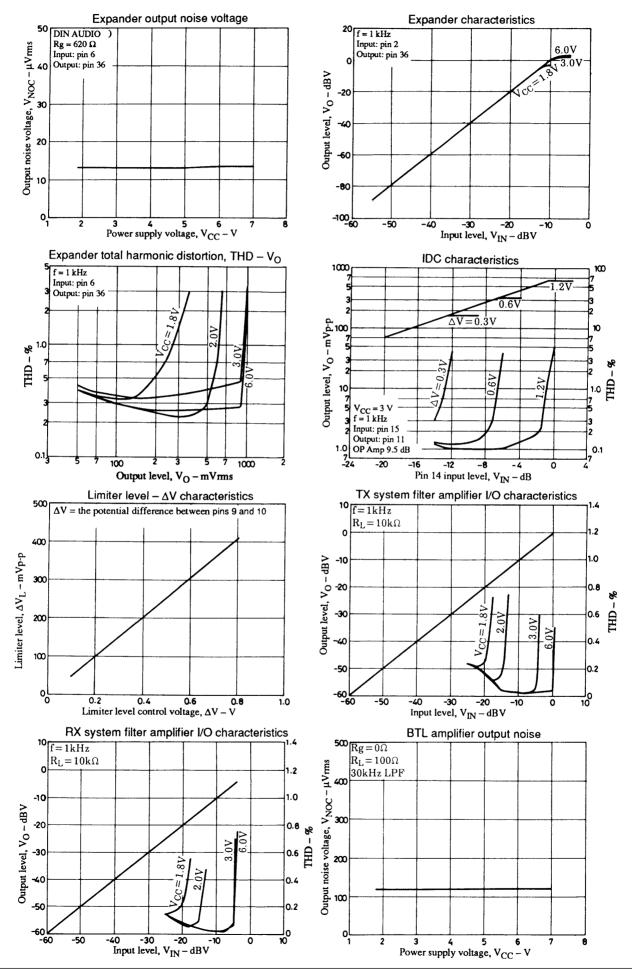
# **Pin Functions**

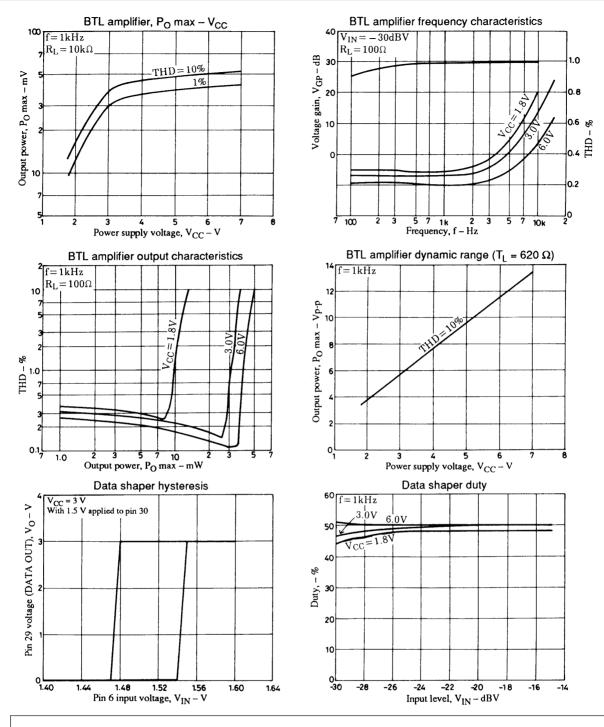
| Pin No.      | Symbol                                                   | Internal equivalent circuit                        | Protection V <sub>CC</sub> side | ve diode Ground side |
|--------------|----------------------------------------------------------|----------------------------------------------------|---------------------------------|----------------------|
| 1 2          | EXP.V <sub>REC</sub><br>EXP.IN                           | 2 32k 0 VCC  Bi  E.VREF  M  10k 0  A02815          | 0                               | 0                    |
| 3<br>4       | OP OUT1<br>OP IN1                                        | E.VREF 20k0                                        | 0                               | 0                    |
| 5<br>6       | FIL.OUT1<br>FIL.IN1                                      | 6 + 5<br>A02817                                    | 0                               | 0                    |
| 7<br>9<br>24 | EXP.V <sub>REF</sub><br>CMP.V <sub>REF</sub><br>STAND-BY | VCC a x000 x y v v v v v v v v v v v v v v v v v v | 0 0 0                           | 0 0 0                |
| 10           | IDC.ADJ                                                  | 10 VCC<br>10 ₹20kΩ<br>10 C.VREF                    | 0                               | 0                    |

Continued on next page.

# LA8637M


Continued from preceding page.


| Pin No.              | Symbol                                              | Internal equivalent circuit                                               |                      | ve diode    |
|----------------------|-----------------------------------------------------|---------------------------------------------------------------------------|----------------------|-------------|
|                      | 5,11501                                             | mornal oquivalent encut                                                   | V <sub>CC</sub> side | Ground side |
| 11<br>12             | FIL.OUT2<br>FIL.IN2                                 | 12 + 11 A02820                                                            | 0                    | 0           |
| 13<br>26             | TX.OUT<br>DATA IN                                   | C.VREF 50KQ 777                                                           | 0                    | 0           |
| 14<br>15             | OP OUT2<br>OP IN2                                   | C.VREF  20k0  A02822                                                      | 0                    | 0           |
| 16<br>17<br>18<br>19 | CMP.OUT<br>CMP.V <sub>REC</sub><br>CMP.NF<br>CMP.IN | C.VREF  19 30ka 30ka 30ka  18  0 VCC  19 32ka  18  10ka  10ka  10ka  10ka | 0 0 0                | 0 0 0       |
| 20<br>21<br>22       | PRE OUT<br>PRE NF<br>PRE IN                         | 22 W VCC 20 20 A02824                                                     | 0<br>-<br>-          | 0 0         |


Continued from preceding page.

| Pin No.        | Symbol                         | Internal equivalent circuit                         | Protecti             |             |  |
|----------------|--------------------------------|-----------------------------------------------------|----------------------|-------------|--|
|                | Symbol                         | mornal equivalent encult                            | V <sub>CC</sub> side | Ground side |  |
| 23             | ALC.CT                         | 23<br>A02825                                        | 0                    | 0           |  |
| 27<br>28       | TX.CONT<br>RX.MUTE             | C.VREF ○ W 27                                       | 0                    | 0           |  |
| 29<br>30       | DATA OUT<br>V.HOLD             | IN                                                  | -0                   | 0           |  |
| 32<br>33<br>35 | BTL OUT2<br>BTL OUT1<br>BTL IN | E.VREF  10k0  10k0  10k0  P.VCC  33  E.VREF  A02828 | -<br>-<br>-          | 0 0         |  |
| 36             | EXP.OUT                        | IN ₩ 20kΩ + 36  E.VREF 20kΩ A02829                  | 0                    | 0           |  |

Note: All  $V_{CC}$  side diodes are connected to  $V_{CC}$  at pin 25.







- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
  - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
  - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1995. Specifications and information herein are subject to change without notice.