

SANYO Semiconductors

DATA SHEET

An ON Semiconductor Company

LB11983

For Fan Motor Driver for Refrigerator 3-Phase Sensorless Motor Driver

Overview

The LB11983 is a 3-phase full-wave current linear sensorless motor driver. It is optimal for refrigerator fan motor drive.

Monolithic Digital IC

Features

- Current linear driving technique.
- Current limiter circuit.
- Over saturation prevention circuit for output stage.
- Provides coil back EMF FG output.
- Thermal shoutdown circuit.
- Beat lock pervention circuit.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

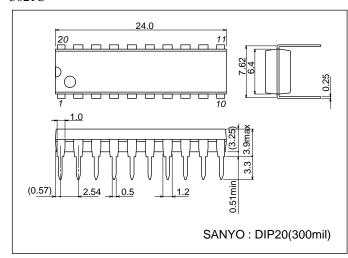
_					
Parameter	Symbol	Conditions	Ratings	Unit	
Supply voltage	V _{CC} max		14.5	V	
Output application voltage	V _O max		14.5	V	
Input application voltage	V _I max		-0.3 to V _{CC} +0.3	V	
Output current	I _O max		1.0	Α	
Allowable power dissipation	Pd max	Independent IC	1.0	W	
Operating temperature	Topr		-30 to +85	°C	
Storage temperature	Tstg		-55 to +150	°C	

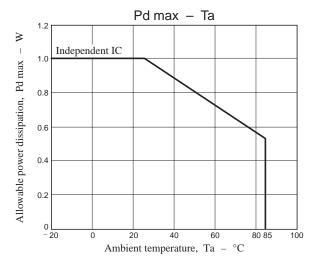
Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vcc		7 to 13.8	V

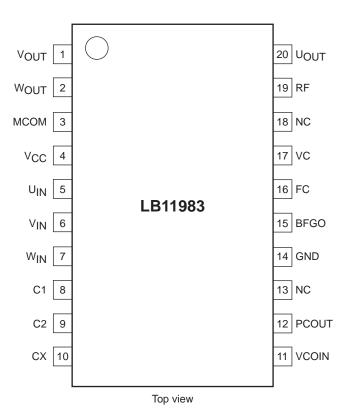
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LB11983

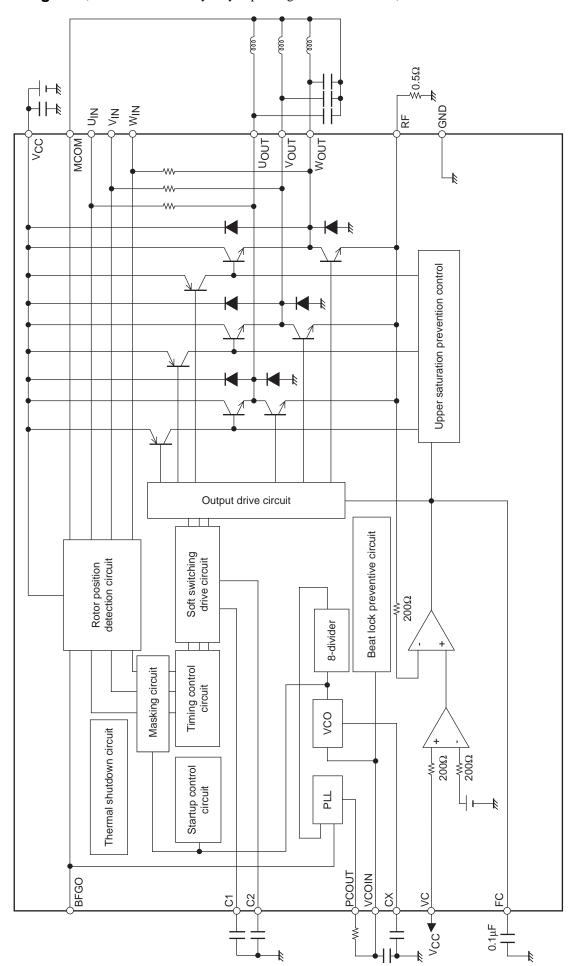

Electrical Characteristics at Ta = 25°C, $V_{CC} = 12V$


Parameter	Symbol	Conditions	Ratings			Unit	
Parameter	Symbol	Conditions	min	typ	max	Unit	
Supply current	Icc	$VC = V_{CC}$		20	30	mA	
Output saturation voltage 1	V _O sat1	I _O = 0.4A, Source + Sink		1.4	2.0	V	
Output saturation voltage 2	V _O sat2	$I_O = 0.8A$, Source + Sink, RF = 0Ω		1.8	2.6	V	
MCOM pin common-mode input voltage range	VIC		0		V _{CC} -2	V	
PCOUT output current 1	IPCOU	Source side		-90		μΑ	
PCOUT output current 2	IPCOD	Sink side		90		μΑ	
VCOIN input current	IVCOIN	VCOIN = 5V		0.1	0.2	μΑ	
VCO minimum frequency	fVCOMIN	VCOIN = open		400		Hz	
VCO maximum frequency	fVCOMAX	VCOIN = 5V		18.5		kHz	
C1, C2 source current ratio	RSOURCE	IC1SOURCE/IC2SOURCE	-12		+12	%	
C1, C2 sink current ratio	RSINK	IC1SINK/IC2SINK	-12		+12	%	
C1 source and sink current ratio	RC1	IC1SOURCE/IC1SINK	-35		+15	%	
C2 source and sink current ratio	RC2	IC2SOURCE/IC2SINK	-35		+15	%	
Counter FG output ON volt	V _{OL}				0.4	V	
Counter FG output OFF vol	Vон		4			V	
Thermal shutdown operating temperature	TTSD	Design target value *	150	180	210	°C	
Thermal shutdown hysteresis	ΔTTSD	Design target value *		15		°C	

Note: * These items are design target values and are not tested.


Package Dimensions

unit: mm (typ) 3021C

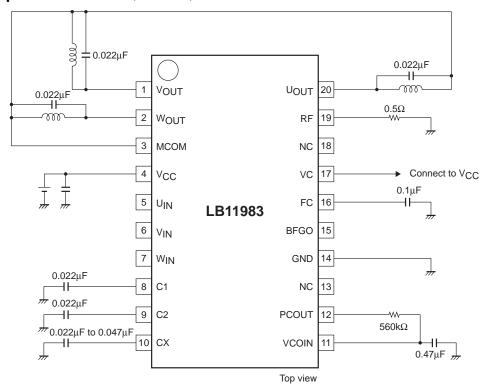


Pin Assignment

Block Diagram (External constant may vary depending on the motor used.)

LB11983

Pin Functions


Pin No.	Pin name	Function	Equivalent circuit
20	U _{OUT}	Drum motor driver output pin.	Vcc
1	VOUT		+ + + + + + + + + + + + + + + + + + + +
2 19	WOUT RF	Minimum potential of the drum motor driver output transistor. This voltage is detected for constantcurrent control. The current limiter is also activated upon detection of this potential.	3.9Ω 10kΩ 30kΩ 20μΑ 3.9Ω 20μΑ 3.9Ω 5 6
			30kΩ 19
4	Vcc	Power supply pin. (8 to 13.8V)	
3	МСОМ	Middle point input pin of motor coil. The coil waveform is detected with reference to this voltage.	Vcc
5	U _{IN}	Input pin of the coil waveform detection comparator. Connected to each phase output with a built-in resistor of $10 \text{k}\Omega$	5 \$10kΩ 200Ω 3 7 \$\frac{1}{N}\$ \$200Ω
6	V _{IN}		
7	WIN		
8	C1	Triangular wave generating capacitor connection pin. This triangsular wave causes soft switching of coil output waveform.	15μA 15μA 9 5μA
9	C2		2S 1/2VREG-VF
10	СХ	The operating frequency range and minimum operating frequency are determined from the value of capacitor connected to this pin and GND in the VCO circuit.	VCC VREG 100μΑ
11	VCOIN	VCO circuit voltage input pin. Inputs the PCOUT pin voltage through CR filtering.	10kΩ VREG 10kΩ VREG 10kΩ VREG 10kΩ VREG

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	Function	Equivalent circuit
12	PCOUT	VCO circuit PLL output pin.	VREG VCC (12)
14	GND	GND for others than the output transistor.	
15	BFGO	FG output to detect motor reverse feeder voltage. (Composition of three phases)	VREG + VF — VREG VREG — VID 100μA \$5kΩ 15
16	FC	Frequency characteristics compensation pin. Insertion of a capacitor between this pin and GND stops oscillation of the current control closed loop.	VREG VCC 1kΩ§ 10kΩ §5kΩ
17	VC	Speed control pin. The control is a constant-current control under current feedback from RF. Normally, this pin is connected to V _{CC} for use.	VCC 50μΑ → 50μΑ ≥ 27kΩ 40kΩ → 224kΩ

Sample Application Circuit (Reference)

Notes 1. Be sure to connect the VC pin to VCC directly before use.

- 2. For the constant of capacitor, etc., our value established through examination is given for reference. Adjust the value according to the motor to be used when considering this IC.
- 3. If the output is not oscillated with the motor used, a capacitor inserted between output coil ends is not necessary.
- 4. Pins 5 through 7 (U_{IN}, V_{IN}, and W_{IN}) are not to be used by a user. These are connected inside IC and should always be kept independent and open.
- 5. NC pins (14 and 18) are not connected inside IC and can be used as relay pins.
 - SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
 - SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
 - In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
 - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
 - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
 - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
 - Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of September, 2008. Specifications and information herein are subject to change without notice.