Monolithic Digital IC

Package Dimensions

unit: mm

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	V _{CC} 1 max		7	V
Maximum supply voltage 2	V _{CC} 2 max		8.5	V
Maximum supply voltage 3	VS_C max	Capstan motor driver	7.0	V
Maximum supply voltage 4	VS_D max	Drum motor driver	7.0	V
Maximum supply voltage 5	VS_L max	Loading motor driver	7.0	V
Applied output voltage	Vo max		8.0	V
Applied input voltage	VI1 max	Control circuits	–0.3 to V _{CC} 1 + 0.3	V
	VI2 max	U, V, W, COM	8.0	V
Capstan motor output current	IOC max		1.0	А
Drum motor output current	IOD max		1.0	А
Loading motor output current	IOL max		0.6	А
Allowable power dissipation	Pd max	IC only	0.6	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		–55 to +150	°C

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage 1	V _{CC} 1	$V_{CC}1 \le V_{CC}2$	2.7 to 6.0	V
Power supply voltage 2	V _{CC} 2		3.5 to 8.5	V
Power supply voltage 3	VS_C	$VS_C \le V_{CC}^2$	to 7.0	V
Power supply voltage 4	VS_D	$VS_D \le V_{CC}^2$	to 7.0	V
Power supply voltage 5	VS_L	$VS_L \le V_{CC}^2$	2.2 to 7.0	V
Hall input amplitude	VHALL	Capstan motor	±20 to ±80	mVp–p

Allowable Operating Ranges at Ta = $25^{\circ}C$

$\label{eq:constant} \textit{Electrical Characteristics/Capstan Motor Driver Block at Ta = 25^{\circ}C, V_{CC}1 = 3V, V_{CC}2 = 4.75V, V_{S} = 1.5V, V_{CC}1 = 3V, V_{CC}2 = 4.75V, V_{CC}1 = 3V, V_{CC}1 = 3V,$

	Baramatar	Symbol	Conditions		Ratings		Linit	
	Farameter	Symbol	Conditions	min	typ	max	Onit	
rent	Vcc1 power supply current	Icc1	lout = 100 mA VSTBY_C = 3V		4	8	mA	
/ cur	Vcc2 power supply current	Icc2	lout = 100 mA VSTBY_C = 3V		6	12	mA	
(Iddr	Vcc1 idle current	lcc1Q	VSTBY_C = 0V		2.1	4	mA	
er si	Vcc2 idle current	Icc2Q	VSTBY_C = 0V			100	μΑ	
Pow	Vs idle current	IsQ	VSTBY_C = 0V		75	100	μΑ	
<1	Upper side residual voltage	VXH1	lout = 0.2A	0.15	0.22	0.29	V	
ŝ	Lower side residual voltage	VXL1	lout = 0.2A	0.15	0.20	0.25	V	
(2	Upper side residual voltage	VXH2	lout = 0.5A		0.25	0.40	V	
Ś	Lower side residual voltage	VXL2	lout = 0.5A		0.25	0.40	V	
	Output saturation voltage	Vosat	lout = 0.8A, Sink + Source			1.40	V	
	Overlap amount	O.L	$RL = 39\Omega \times 3$, Rangle = 20 k Ω Note 2	73	80	87	%	
ifier	Input offset voltage	VHOFF	Note 1 Design target value	-5		+5	mV	
ampl	Common mode input range	VHCM	Rangle = 20 k Ω	0.95		2.1	V	
Hall	Input/output voltage gain	VGVH	Rangle = 20 k Ω	24.5	27.5	30.5	dB	
nio	High level voltage	VSTH		2.5		V _{CC} 1	V	
γ	Low level voltage	VSTL		-0.2		+0.7	V	
and	Input current	ISTIN	VSTBY_C = 3V			50	μA	
Sta	Leakage current	ISTLK	VSTBY_C = 0V			-30	μA	
Ĺ	High level voltage	VFRCH		2.5		V _{CC} 1	V	
; pir	Low level voltage	VFRCL		-0.2		+0.4	V	
RC	Input current	IFRCIN	VFRC_C = 3V		20	30	μA	
ш	Leakage current	IFRCLK	VFRC_C = 0V			-30	μA	
т	Hall power supply voltage	VHALL	IH = 5 mA, VH(+) - VH(-)	0.75	0.85	0.95	V	
\geq	(-) pin voltage	VH(-)	IH = 5 mA	0.81	0.88	0.95	V	
	Input offset voltage	VFGOFF		-3		+3	mV	
_	Input bias current	lbFG	VFGIN+ = VFGIN- = 1.5V			500	nA	
atoi	Input bias current offset	∆lbFG	VFGIN+ = VFGIN- = 1.5V	-100		+100	nA	
par	Common mode input range	VFGCM		1.2		2.5	V	
mo	High level output voltage	VFGOH	With internal pull-up	2.8			V	
Ö	Low level output voltage	VFGOL	With internal pull-up			0.2	V	
ш	Voltage gain	VGFG	Note 1 Design target value		100		dB	
	Output current (Sink)	IFGOs	At output pin "L"			5	mA	

Note 1: Design target value, not measured

Note 2: The overlap amount specification is taken as the measurement specification.

Deremeter		Conditions	Ratings			1.1
Parameter	Symbol	Conditions		typ	max	Unit
Power supply current 4	ICC2	IO = 76 mA VSTBY_D = 3V VSTBY_C = 0V		0.75	2.5	mA
Output idle current 4	ICC2Q	VSTBY D = VSTBY_C = $0V$			100	μΑ
Output idle current 5	IS(D)Q	VSTBY D = VSTBY_C = 0V		100	300	μΑ
Output saturation voltage, upper side 1	VOU1	IO = 0.1A RF = 0.25Ω		0.3	0.5	V
Output saturation voltage, lower side 1	VOD1	IO = 0.1A RF = 0.25Ω		0.3	0.5	V
Output saturation voltage, upper side 2	VOU2	IO = 0.4A, VS = 3V RF = 0.25Ω		0.5	0.8	V
Output saturation voltage, lower side 2	VOD2	IO = 0.4A, VS = 3V RF = 0.25Ω		0.5	0.8	V
COM pin common mode input voltage range	VIC		0.3		V _{CC} 2-0.9	V
Standby pin High level voltage	VSTBYH		2		V _{CC} 1	V
Standby pin Low level voltage	VSTBYL		-0.2		+0.7	V
Standby pin input current	ISTBYH	VSTBY_D = 3V			50	μΑ
Standby pin leakage current	ISTBYL	VSTBY_D = 0V	-10			μΑ
FRC pin High level voltage	VFRCH		2		V _{CC} 1	V
FRC pin Low level voltage	VFRCL		-0.2		+0.7	V
FRC pin input current	IFRCI	VFRC_D = 3V			50	μΑ
FRC pin leakage current	IFRCL	VFRC_D = 0V	-10			μΑ
Slope pin source current ratio	RSOURCE	ICSLP1SOURCE/ICSLP2SOURCE	-15		+15	%
Slope pin sink current ratio	RSINK	ICSLP1SINK/ICSLP2SINK	-15		+15	%
CSLP1 source/sink current ratio	RCSLP1	ICSLP1SOURCE/ICSLP1SINK	-35		+15	%
CSLP2 source/sink current ratio	RCSLP2	ICSLP2SOURCE/ICSLP2SINK	-35		+15	%
Startup frequency	Freq	Cosc = 0.1 µF, OSC frequency (Target)		11.5		Hz
Phase delay-width	Dwidth	(Target)		30		deg
SELCSLP pin High level voltage	VSELH		2		V _{CC} 1	V
SELCSLP pin Low level voltage	VSELL		-0.2		+0.7	V
SELCSLP pin input current	ISELH	VSELCSLP = 3V			50	μA
SELCSLP pin leakage current	ISELL	VSELCSLP = 0V	-10			μΑ

Cylinder Motor Driver Block at Ta = 25° C, V_{CC}1 = 3V, V_{CC}2 = 4.75V, V_S = 3V

Note) Items shown to be "Target" are not measured.

FG/PG Amplifier Block at Ta = 25°C, $V_{CC}1$ = 3V, $V_{CC}2$ = 4.75V, V_S = 3V

Devenueter	Current al	Conditions	Ratings			L la it	
Parameter	Symbol	Conditions	min	typ	max		
[FG amplifier]		•					
Input offset voltage	VIO	(Target)		±1	±5	mA	
Input bias current	IBIN-	(Target)			250	nA	
Common mode input voltage range	VICOM	(Target)	1		2	V	
Open loop gain	GVFG	f = 1 kHz (Target)		55		dB	
Output ON voltage	VOL	At IO = 10 μA			0.4	V	
Output OFF voltage	VOH	At IO = 10 μA	V _{CC} 1-0.5			V	
Schmitt amplifier hysteresis width	VSHIS	(Target)		50		mV	
Reference voltage	VREF		1.15	1.30	1.45	V	
[PG amplifier]							
Input offset voltage	VIO	(Target)		±1	±5	mV	
Input bias current	IBIN-	(Target)			250	nA	
Common mode input voltage range	VICOM	(Target)	1		2	V	
Open loop gain	GVPG	f = 1 kHz (Target)		55		dB	
Output ON voltage	VOL	At IO = 10 μA			0.4	V	
Output OFF voltage	VOH	At IO = 10 μA	V _{CC} 1-0.5			V	
Schmitt amplifier hysteresis width	VSHIS	(Target)		50		mV	

Note) Items shown to be "Target" are not measured.

Loading Motor	r Driver Block at	$Ta = 25^{\circ}C,$	$V_{CC}1 = 3V, V$	$C_{CC}^2 = 4.75V,$	$V_S = 3V$
---------------	-------------------	---------------------	-------------------	---------------------	------------

Deremeter	Symbol	Conditions	Ratings			Linit
Parameter	Symbol	Conditions	min	typ	max	Unit
VCC1 power supply current 1	ICC11	VSTBY_C = VSTBY_D = 0V (standby)		2.1	4	mA
VCC1 power supply current 2	ICC12	VSTBY_C = VSTBY_D = 0V (forward/reverse)		14	19	mA
VCC1 power supply current 3	ICC13	VSTBY_C = VSTBY_D = 0V (at braking)		10	14	mA
VCC2 power supply current 1	ICC21	VSTBY_C, D = 0V (standby (V _{CC} 1 = OPEN))			100	μΑ
VCC2 power supply current 2	ICC22	VSTBY_C, D = 0V (standby (V _{CC} 1 = 3.0V))			100	μΑ
VCC2 power supply current 3	ICC23	VSTBY_C, D = 0V (forward/reverse)		15.0	25	mA
VS L power supply current	I VS L	VSTBY_C, D = 0V (standby)			20	μΑ
[Logic input (DEC1 pin, DEC2 pin)]						
High level input voltage	VINH	V _{CC} 1 = 2.7 to 4.0V	2.0		V _{CC} 1	V
High level flowing current	IINH	VIN = 3.0V		41	65	μΑ
Low level input voltage	VINL	V _{CC} 1 = 2.7 to 4.0V	-0.2		0.6	V
Low level flowing current	IINL	VIN = 0.6V		5	10	μΑ
[Loading motor driver]		· · · · · · · · · · · · · · · · · · ·				
Output saturation voltage 1	VOH	IO = 200 mA (upper/lower composition)		0.2	0.3	V
Output saturation voltage 2	VSHIS	IO = 400 mA (upper/lower composition)		0.4	0.6	V
[Reel FG amplifier]		· · · · · ·				
Input offset voltage	VIO			±1	±5	mV
Input bias current	IB				1	μΑ
Common mode input voltage range	VICM		1		2	V
Open loop gain	GV1			55		dB
[Thermal shutdown circuit]						
TSD operating temperature	T-TSD	(Target)		180		°C
TSD temperature hysteresis width	ΔTSD	(Target)		15		°C

Note) Items shown to be "Target" are not measured.

Truth Table

Capstan Motor Truth Table

FRC
Н
L
Н
L
Н
L
Н
L
Н
L
Н
L

Note: "H" for FR means a voltage of 2.50V or above. "L" for FR means a voltage of 0.4V or below. (Vcc1 = 3V)

Note: At the Hall input, "H" means that the potential of the (+) terminal for each phase input is at least 0.02V higher than the (–) terminal. "L" means that the potential of the (+) terminal for each phase input is at least 0.02V lower than the (–) terminal.

Loading Motor Truth Table

In	out	Out	Mode	
DEC1	DEC2	OUT1	OUT2	
L	L	Off	Off	Standby
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
Н	Н	L	L	Brake

Pin Assignment

Top view

LB11990W

Pin Description

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
50 49 48 47 46 45 39	Uin1 Uin2 Vin1 Win2 Win1 Win2 ANGLE	0 to V _{CC} 1	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Capstan motor driver U, V, W phase Hall element input/output pins. Logic High means IN1 > IN2.
44 55 53 51 52	VS_C U-OUT_C V-OUT_C W-OUT_C RF_C	0 to V _{CC} 2	$1/4^{*}Vs$ $1/4^{*}Vs$ $1/4^{*}Vs$ 0 0 0 0 0 0 0 0 0 0	Capstan motor output amplitude control power supply pins. Voltage must be lower than V _{CC} 2. Capstan motor driver U, V, W phase output pins.
43	VH+ VH–		approx. 1.9V 	Hall element bias voltage supply pins. A voltage of 0.85V (typ.) is generated between VH+ and VH– (at IH = 5 mA).

Continued from	preceding	page
----------------	-----------	------

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
37	FGIN-	0 to V _{CC} 1		FG comparator inverted input pin. No internal bias is applied.
38	FGIN+			FG comparator non-inverted input pin. No internal bias is applied.
36	FGOUT_C			FG comparator output pin. Internal load impedance is $20 \text{ k}\Omega$.
40	FRC_C	0 to V _{CC} 1		Capstan motor forward/reverse select pin. The voltage at this pin (with hysteresis) selects forward or reverse rotation.
2	STBY_C			This pin selects bias supply to capstan circuits other than FG comparator. Setting the pin to Low cuts off the bias supply. Capstan motor standby pin.
35	FGOUT_D		V _{CC} 1 V _{CC} 1 V _T V _{CC} 1 V _T V _T V _T V _T V _T V _T V _T V _T	FG amplifier output pin.
18	OSC			Pin for connecting triangular wave oscillator capacitor. Serves for forced startup waveform generation.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
19	FC1			Frequency characteristics pin. Connecting a capacitor between this pin and ground serves to prevent closed-loop oscillation in the current control circuitry.
20	FILTER		V _{CC1} V_{CC1} V_{CC1} V_{THS2} U_{THS2} U_{TS	Connecting a capacitor between this pin and ground activates the coil output saturation prevention function. In this condition, the VS pin is controlled for motor voltage control. By adjusting the external capacitor, torque ripple compensation can be varied.
28	PGOUT D		V _{CC} 1 V _{CC} 1 V _{CC} 1 V _{CC} 1 V _{CC} 28 28 28	PG amplifier output pin.
29	PGC		Vcc1	PG amplifier peak hold capacitor connection pin.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
30	PGIN	max2.0V min1.0V (At V _{CC} = 3V)	30 	PG amplifier input pin. Connect PG coil between this pin and VREF.
31	VREF		31 Vcc1 1.3V	Internal 1.3V reference voltage. Used as reference voltage for FG and PG amplifiers.
32	FGIN_D	max2.0V min1.0V (At V _{CC} 1 =	V _{CC} 1	FG amplifier input pin. Connect FG coil between this pin and VREF.
33	FGIN1_D	3V)		FG amplifier input signal noise filter capacitor connection.
34	FGIN2_D			FG amplifier input signal noise filter capacitor connection.
16	STBY_D	0 to V _{CC} 1		When this pin is at 0.7V or lower or when it is open, only the FG/ PG amplifier operates. In the motor drive state, the pin should be at 2V or higher. Drum motor standby pin.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
17	FRC_D	0 to V _{CC} 1		Drum motor forward/reverse
			• V _{CC} 1	rotation select pin.
				Low: forward
			jo v v v v v v v v v v v v v v v v v v v	(-0.2V to 0.7V or open)
			50kΩ	High: reverse
				(2V to V _{CC} 1)
60	VS_D	0V to VCC2		Power supply pin for determining
				output amplitude by supplying
				drum motor voltage.
				Must be lower than VCC2 voltage.
41	V _{CC} 2	3.5V to 8.5V		Power supply pin for supplying
				source side predriver voltage and
				coll waveform detect comparator
				constant and drum motors
				capsian, and drum motors.
22	V _{CC} 1	2.7V to 6V		Power supply pin for circuits
				except motor voltage, source
				side predriver voltage, and coil
				waveform detect comparator
				Voltage.
				common for loading, capstan,
13	CSI P1			Pins for connecting triangular
10	OOL! !		Vcc1	wave oscillator capacitor. This
14	CSLP2			triangular wave coil output
				performs waveform soft switching.
			(13(14)	
27	GND			Ground pin for all circuits except
				output.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
26	WIN		Vcc1	Coil waveform detect comparator
24	UIN			input pins.
25	VIN		(₩) để	
			26 200Ω	
			$\begin{array}{c} 25 \\ 24 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ 200\Omega \end{array}$	
23	СОМ			Motor coil midpoint input pin.
	00111			Using this voltage as a reference.
				the coil voltage waveform is
				detected.
			तीत तीत तीत तीत तीत	
56	WOUT_D			U, V, W phase coil output pins.
59	UOUT_D		• • • • • • • • • • • • • • • • • • •	
58	VOUT_D			
			56,58,59	
57	RF_D			Drum motor driver output
				transistor ground. Constant
			L I I I I I I I I I I I I I I I I I I I	current drive is performed by
			777-	detecting the voltage at this pin.
21	FC2		Vool	Output midpoint control.
				Oscillation prevention capacitor
				connection pin.
			(21) • • • • • • • • • • •	
			$\frac{1}{11}$ $\frac{1}{11}$ $\frac{1}{11}$	
12	SELCSLP	0 to V _{CC} 1		When High, this pin sets CSLP
			V _{CC} 1 +	slant to 15 times the slant at Low.
			t fg	When $V_{CC}1 = 3.0V$
				2.0V or higher: High
				0.7V or lower: Low
			$\frac{1}{2}$	

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
15	BFGO		Vcc1	Motor counter EMF voltage FG pulse pin. Outputs a pulse using W phase counter EMF voltage as FG. Connect to ground if not used.
5	VS_L	2.2 to V _{CC} 2		Loading motor power supply pin. Stabilize against noise in the same way as for VCC2.
62	RF_L		VS_L VS_L 62 m 1kΩ	Output transistor P–GND Output current can be detected for motor current control by inserting a resistor between Rf pin and ground.
63 61	OUT1 OUT2		VS_L 61 63 7 62	Loading motor driver output pins. Connect to loading motor.
6 7 11 10	RLM1 RLP1 RLM2 RLP2	0 to V _{CC} 1	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & &$	L-FG amplifier input pins. RLM1 and RLM2 are negative input. RLP1 and RLP2 are positive input.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
89	RLO1 RLO2			R–FG amplifier output pins.
3 4	DEC1 DEC2	0 to V _{CC} 1	$\begin{array}{c} V_{CC1} \\ 10k\Omega \\ \hline \\ 3 \\ \hline \\ 4 \\ \hline \\ 777 $ 777 \\ 777 777 \\ 777	Loading motor input pins. When VCC1 = 3.0V 2.0V or higher: High 0.6V or lower: Low
64	RS_L	0 to V _{CC} 1 -1.5V		Current limiter setting pin. Set voltage between RF pin and ground, for limiting current.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 1999. Specifications and information herein are subject to change without notice.