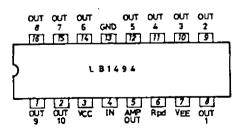


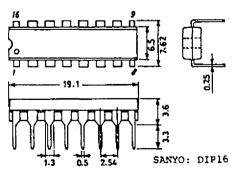
Use

. DC level meters such as signal meters

Features and Functions


- . Wide supply voltage range (4.0 to 16V)
- . FLT direct drive capability
- . On-chip pull-down resistors (Pull-down current can be varied by external resistor Rpd.)
- . On-chip voltage reference
- . Especially suited for DC signal meter use because of on-chip comparators with hysteresis

Absolute Maximum Ratings at Ta=25°C

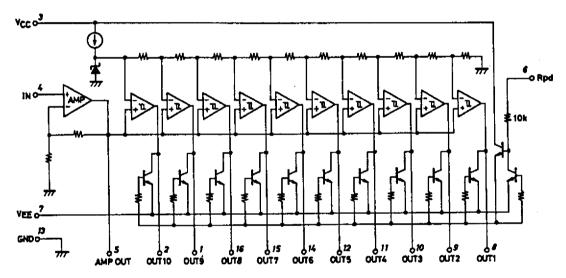

ADSOLUTE Maximum Katings at 18	1=25-0			unit
Maximum Supply Voltage	V _{CC} max	x GND=0V	18	V
Maximum Supply Voltage	VEE	V _{EE} ≦GND	V _{CC} -35	V
Output Supply Voltage	VOUT		$v_{\rm EE}$ to $v_{\rm CC}$ GND to $v_{\rm CC}$ 10	V
Input Supply Voltage	VIN		GND to V _{CC}	V
Output Current	IOUT		ťð	mA
Pull-down Current	Ipd		1.0	mA
Allowable Power Dissipation	Pdmax		960	mW
Operating Temperature	Topg		-25 to +60	°C
Storage Temperature	Tstg		- 55 to +125	°C
Allowable Operating Condition	at Ta=,	25 ⁰ C		unit
Supply Voltage	Vaa	GND=0V	4.0 to 16	v
	VEE	V _{EE} ≦GND	v_{CC} -5 to v_{CC} -35	v
Electrical Characteristics at	Ta=25 ⁰	C.Vcc=6.0V.GND=0	$V, V_{PP} = -24V, Rpd = 91kol$	hms

PIEcel Icar Andi gener india	, at 10-25	of the of other of the state of		20-21	v ôi mp		
		00 00				unit	
Current Dissipation	ICC	V _{IN} =OV	t		6.0	mA	
Sensitivity	VIN	V_{C5}^{IN} -ON level	560	610	660	mV	
-	ТИ	65	Continu	ed on	next	page.	,

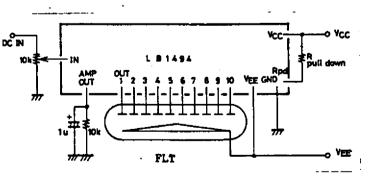
Pin Assignment

Package Dimensions 3064 (unit:mm)

tim f f


Specifications and information herein are subject to change without notice.

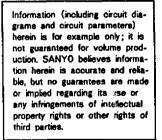
SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN


Continued from preceding p	age.		min	+ v D	ma¥	unit	
C				typ	max		
Comparator Level 1ª	V _{C1}	•		0.20C5	-	mV	
Comparator Level 2	V _{C2}		0.35	0.47C5	0.45	mV	
Comparator Level 3	VC3		0.52	0.6VC5	0.68	mV	
Comparator Level 4	V _{C4}		0.70	0.8VC5	0.90	mV	
Comparator Level 5	V _{C5}	Adjust point		VIN		mγ	
Comparator Level 6	VC6		1.1	1.2705	1.3	шV	
Comparator Level 7	V _{C7}		1.3	1.4705	1.5	mV	
Comparator Level 8	V _{C8}		1.5	1.6VC5	1.7	mV	
Comparator Level 9	V _{C9}		1.7	1.8VC5	1.9	mV	
Comparator Level 10	VC10		1.9	2.07C5	2.1	mV	
Output Saturation Voltage	e V ₀ (sat)	I _{OUT} =-10mA	V _{CC} -1.2			V	
Input Bias Current	IINO		-1.0			uA	
Comparator Hysteresis	VCC(hys)		18	26	34	mV	
Pull-down Current	Ipd	V _{OUT} =V _{CC}		0.3		πA	

*: The comparator level represents the compare point when the input is changed from low level to high level.

Equivalent Circuit

Sample Application Circuit: Signal Meter



Pin Descr	iption
-----------	--------

Pin Name	Pin No.	Function
v _{cc}	3	Power supply pin. The voltage on all other pins must not exceed this V_{CC} value. The voltage across V_{CC} and GND is 4.0 to 16V.
IN	4	Input pin for level displaying signal. Since this pin has a high input impedance, a pull-down resistor of several kohms must be connected across this pin and GND.
V _{EE}	7	Connected to FLT cathode. The voltage on all other pins must exceed this $V_{\rm EE}$ value. The voltage across $V_{\rm CC}$ and $V_{\rm FE}$ is 5.0 to 35V.
GND	13	GND for signal line. A level displaying signal is applied between GND and I_N . If $5.0V \ge V_{CC}$ to $V_{EE} \ge 16V$, this pin and V_{EE} can be at the same potential.
Amp OUT	5	An input signal is amplified approximately 1.7 times and is delivered at this pin. Since this output is of emitter follower type, a load resistor of 10kohms must be connected across this pin and GND. The response time can be controlled by the time constant which is provided by a capacitor of several uF to several tens of uF connected in parallel.
OUT 1	1,2	Connected to FLT grid or anode. FLT is lighted in
-to OUT 10	8to12 14to16	approximately 120mV-step in the order of increasing level as OUT1, OUT2,, OUT10.
Rpd	6	Pin used to determine pull-down current Ipd. Pull-down current Ipd is determined by a resistor connected across this pin and V_{CC} and voltage across V_{CC} and V_{EE} . Assuming the value of a resistor connected across V_{CC} and Rpd is R(kohm) and the voltage across V_{CC} and V_{EE} is V(V), Ipd(mA) is calculated by the following formula. Ipd= $(V-1.4)/(R+10) \le 1$ (Refer to Fig.) It should be noted, however, that the early effect of each transistor increases the actual Ipd several $\$$.

Ipd - Rpd

