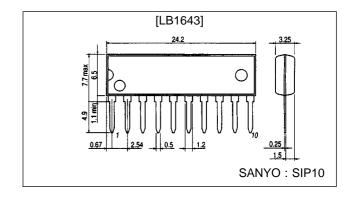




### Forward/Reverse Motor Driver with Brake

### Overview

The LB1643 is a forward/reverse motor driver IC. The direction and brake functions are controlled from a single input, and the output voltages can be set by resistors. Further, the output voltage has 3 modes, full, high-level and low-level voltage modes. The output voltage can be controlled from a single input and a microcontroller interface.


### **Features**

- Single-input forward, reverse and brake functions
- Output voltage can be set using resistors
- Single-input full-drive, high-level drive and low-level drive select function
- Microcontroller interface
- · Built-in surge-current absorption components
- Built-in reference voltage circuit
- Built-in thermal protection circuit

## **Package Dimensions**

unit: mm

### 3043A-SIP10

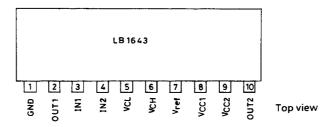


# **Specifications**

### Absolute Maximum Ratings at Ta = 25 °C

| Parameter                   | Symbol              | Conditions                        | Ratings     | Unit |
|-----------------------------|---------------------|-----------------------------------|-------------|------|
| Maximum supply voltage      | V <sub>CC</sub> max |                                   | 18          | V    |
| Input voltage               | V <sub>IN</sub>     | V <sub>CC</sub> > V <sub>IN</sub> | -0.3 to +6  | V    |
| Output current              | lout                |                                   | ±1.6        | A    |
| Allowable power dissipation | Pd max              |                                   | 1.2         | W    |
| Operating temperature       | Topr                |                                   | -25 to +75  | °C   |
| Storage temperature         | Tstg                |                                   | -55 to +125 | °C   |

### Allowable Operating Ranges at Ta = 25 °C


| Parameter                               | Symbol            | Conditions            | Ratings   | Unit |
|-----------------------------------------|-------------------|-----------------------|-----------|------|
| Supply voltage ranges                   | V <sub>CC</sub> 1 |                       | 8.0 to 18 | V    |
| Supply voltage ranges                   | V <sub>CC</sub> 2 | $V_{CC1} \ge V_{CC2}$ | 5 to 18   | V    |
| Forward-reverse direction prohibit time | t off             |                       | ≧20       | μs   |

## Electrical Characteristics at Ta = 25 $^{\circ}$ C, $V_{CC}$ = 12 V

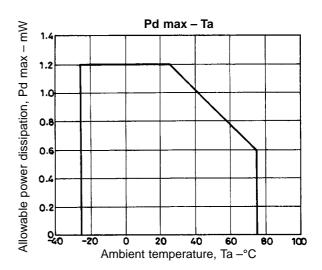
| Parameter                    | Symbol            | Conditions                                                                                                     | min | typ  | max  | Unit   |
|------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|-----|------|------|--------|
| Input low-level voltage      | $V_{INL}$         |                                                                                                                | 0   |      | 1.0  | V      |
| Input high-level voltage     | V <sub>INH</sub>  |                                                                                                                | 4.2 |      | 6.0  | V      |
| Input mid-level voltage      | V <sub>INM</sub>  |                                                                                                                | 2.0 |      | 3.0  | V      |
| Input impedance              | Z <sub>IN</sub>   |                                                                                                                |     | 75   |      | kΩ     |
| Current drain                | Icc               |                                                                                                                |     | 5.5  | 10   | mA     |
| Output voltages              | V <sub>OUT1</sub> | $R_L = 60 \Omega$ , $V_{CH} = 2.5 V$ , $V_{IN}1 = 2.5 V$ , $V_{IN}2 = 0 V$                                     | 4.4 | 4.95 | 5.4  | V      |
| Output voltages              | V <sub>OUT2</sub> | $R_L = 60 \Omega$ , $V_{CH} = 2.5 V$ , $V_{IN}1 = 2.5 V$ , $V_{IN}2 = 5.0 V$                                   | 4.4 | 4.95 | 5.4  | V      |
| Output leakage current       | l <sub>OL</sub>   | R <sub>L</sub> = ∞                                                                                             |     | 0.01 | 1.0  | mA     |
| 0-1                          | Vsat11            | V <sub>CC</sub> = 12 V, I <sub>OUT</sub> = 300 mA                                                              |     | 1.9  | 2.2  | V      |
| Saturation voltages (upper)  | Vsat12            | V <sub>CC</sub> = 12 V, I <sub>OUT</sub> = 500 mA                                                              |     | 1.9  | 2.3  | V      |
| 0-1                          | Vsat21            | V <sub>CC</sub> = 12 V, I <sub>OUT</sub> = 300 mA                                                              |     | 0.25 | 0.5  | V      |
| Saturation voltages (lower)  | Vsat22            | V <sub>CC</sub> = 12 V, I <sub>OUT</sub> = 500 mA                                                              |     | 0.4  | 0.65 | V      |
| Reference voltage            | Vref              |                                                                                                                | 6.0 | 6.35 | 6.8  | V      |
| Reference voltage load       | ∆Vref             |                                                                                                                |     | 0.05 | 0.4  | ) // A |
| characteristics              | ∆lref             | Iref = −2.0 to 0 mA                                                                                            |     | 0.05 | 0.1  | V/mA   |
| Control to output gain       |                   | $V_{OUT}/V_{CH}$ , $V_{OUT}/V_{CL}$<br>$V_{CH} = 2.5 \text{ V}$ , $V_{CL} = 2.5 \text{ V}$ , $R_L = 60 \Omega$ | 1.5 | 1.9  | 2.4  | Times  |
| Thermal shutdown temperature | T <sub>TSD</sub>  | See note.                                                                                                      | 150 | 180  |      | °C     |

Note: Design target value only (not measured).

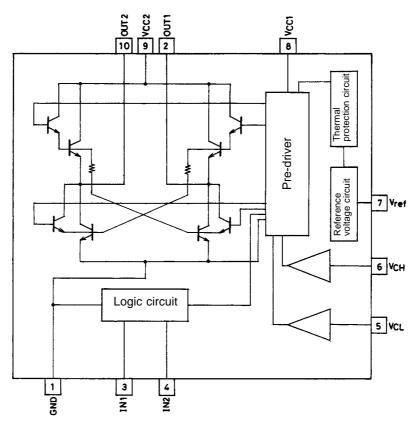
### **Pin Assignment**



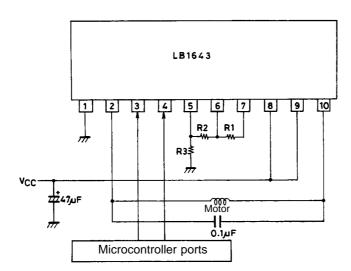
### **Truth Table**


| Int | Input |                  | voltage          | Operation         |  |
|-----|-------|------------------|------------------|-------------------|--|
| IN1 | IN2   | OUT1             | OUT2             | Operation         |  |
| Н   | Н     | L                | FULL             |                   |  |
| М   | Н     | L                | 2V <sub>CH</sub> | Forward (reverse) |  |
| L   | Н     | L                | 2V <sub>CL</sub> |                   |  |
| Н   | М     | OFF              | OFF              |                   |  |
| М   | М     | OFF              | OFF              | Brake             |  |
| L   | М     | OFF              | OFF              |                   |  |
| Н   | L     | FULL             | LOW              |                   |  |
| М   | L     | 2V <sub>CH</sub> | LOW              | Reverse (forward) |  |
| L   | L     | 2V <sub>CL</sub> | LOW              |                   |  |

Input levels are




 $<sup>\</sup>begin{array}{l} \bullet \ \ V_H \geqq 4.2 \ V \\ \bullet \ \ V_M = 2.0 \ to \ 3.0 \ V \\ \bullet \ \ V_L \leqq 1.0 \ V \\ \end{array}$ 


When IN1 and IN2 are open, they take on a voltage of 2.5 V. Operation equivalent to LB1641.



### **Internal Equivalent Circuit**



### **Sample Application Circuit**



### **Usage Notes**

- 1. Use a microcontroller with CMOS output ports for hight-level, low-level and open-circuit conditions.
- 2. It is recommended that R1, R2 and R3 total approximately  $60 \text{ k}\Omega$ .
- 3. The input voltage for IN1 and IN2 should be 0 to 6 V to ensure the output voltage does not cause incorrect operation when a negative voltage is applied. Furthermore, IN1 and IN2 voltages should not be applied if the  $V_{CC}$  supply is not applied.
- 4. To avoid occurrences where both the upper and lower transistors are ON simultaneously, make sure IN1 or IN2 is open for a period of tens of ms before switching control to the opposite device.
- 5. Connect a 20  $\mu F$  or larger capacitor between  $V_{\mbox{\footnotesize CC}}$  and GND.
- 6. A large current of several hundred mA flows in the motor circuits when the motor is being driven. Accordingly, the output current line and the input circuit should be wired so that they do not have a common impedance.

# **Pin Description**

| Pin No. | Pin name          | Equivalent circuit                      | Description                                                                                                              |  |  |
|---------|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| 1       | GND               |                                         | Power and signal ground                                                                                                  |  |  |
| 3       | IN1               | VCC1 25µA € 19kΩ  75kΩ 25µA € 19kΩ  GND | • Output voltage control input terminal<br>• $V_M \cong 2.5 \ V$ when input is open.                                     |  |  |
| 4       | IN2               | VCC1                                    | <ul> <li>Forward, reverse and brake control input terminal</li> <li>V<sub>M</sub> ≅ 2.5 V when input is open.</li> </ul> |  |  |
| 5       | V <sub>CL</sub>   | VCC1 GND                                | Output voltage set terminal                                                                                              |  |  |
| 6       | V <sub>CH</sub>   | VCC1 GND                                | Output voltage set terminal                                                                                              |  |  |
| 7       | Vref              | VCC1 OF GND                             | • Reference voltage output. Vref = 6.35 V                                                                                |  |  |
| 8       | V <sub>CC</sub> 1 |                                         | Signal voltage supply                                                                                                    |  |  |
| 9       | V <sub>CC</sub> 2 |                                         | Power voltage supply                                                                                                     |  |  |

| Pin No. | Pin name | Equivalent circuit   | Description                       |
|---------|----------|----------------------|-----------------------------------|
| 2       | OUT1     | VCC2<br>\$260a 260a≨ | a Mater call connection terminals |
| 10      | OUT2     | Out 2 out 1          | Motor coil connection terminals   |

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
  - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
  - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1998. Specifications and information herein are subject to change without notice.