Overview

The LB1825 is a three-phase brushless motor driver IC optimal for LBP polygon mirror and magneto-optical disk spindle motor drive.

Functions and Features

- Three-phase full-wave current control drive
- PLL speed control
- Internal 24-mode clock divisor switching
- Phase lock detector output
- FG/Hall FG selection
- Current limiter circuit
- 7 V stabilized power supply output pin
- Reverse torque braking
- Crystal oscillator circuit
- Internal/external reference frequency selection
- Built-in FG amplifier and FG pulse output
- Forward/reverse rotation switching
- Low power supply voltage protection circuit
- Thermal protection circuit

Package Dimensions

unit: mm
3147A-DIP28H

SANYO: DIP28H

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol		Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{CC}} \max$		30	V
Maximum output current	$\mathrm{I}_{\mathrm{O}} \max$	$\mathrm{t}<0.1 \mathrm{~s}$	A	
Allowable power dissipation	Pd max1	Independent IC	3.0	A
	Pd max2	With an arbitrarily large heat sink	W	
Operating temperature	Topr		W	
Storage temperature	Tstg		-20 to +80	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{2 5}^{\boldsymbol{}} \mathbf{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V_{CC}		10 to 28	V

Electrical Characteristics at $\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$

Parameter		Symbol	Conditions	min	typ	max	Unit
Current drain		$\mathrm{I}_{\mathrm{CC}}{ }^{1}$	Braking stopped mode		35	47	mA
		$\mathrm{I}_{\mathrm{cc}}{ }^{2}$	FG ${ }_{\text {Out }}{ }^{1}$ stopped mode		35	47	mA
		$\mathrm{I}_{\mathrm{CC}} 3$	External clock, braking stopped mode		28	40	mA
Output saturation voltage	Upper transistor (1)	V_{O} (sat)1	$\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}$		1.0	1.6	V
	Upper transistor (2)	V_{0} (sat)2	$\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$		1.25	2.1	V
	Lower transistor (1)	V_{O} (sat) 1	$\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}$		0.6	1.0	V
	Lower transistor (2)	V_{O} (sat)2	$\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$		0.9	1.6	V
Output leakage current		I LEAK				100	$\mu \mathrm{A}$
[Fixed voltage block]							
Output voltage		$\mathrm{V}_{\text {REG }}$	$\mathrm{I}_{\mathrm{REG}}=20 \mathrm{~mA}$	6.3	7.0	7.8	V
Output current		$\mathrm{I}_{\text {REG }}$		20			mA
Load variation		$\Delta \mathrm{V}_{\text {REG }}$	$\mathrm{I}_{\mathrm{REG}}=0$ to 20 mA			0.25	V
Temperature coefficient		$\alpha \mathrm{V}_{\text {REG }}$	Design target value		-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
[Hall input block]							
Input bias current		$\mathrm{I}_{\mathrm{B}}(\mathrm{HA})$			1	4	$\mu \mathrm{A}$
Common-mode input range				1.5		$\mathrm{V}_{\mathrm{CC}}-1.8$	V
Input sensitivity		DV ${ }_{\text {H }}$				20	mV
Input offset voltage		$\mathrm{V}_{\mathrm{IOH}}$				20	mV
[Drive block]							
Dead zone width		V_{DZ}		50		200	mV
Output idling voltage		$\mathrm{V}_{\text {ID }}$				6	mV
Forward gain		$\mathrm{G}_{\text {DF }}{ }^{+}$		0.4	0.5	0.6	
Reverse gain		$\mathrm{G}_{\mathrm{DF}^{-}}$		-0.6	-0.5	-0.4	
Accelerate command voltage		$\mathrm{V}_{\text {STA }}$		6.0	6.3		V
Decelerate command voltage		$\mathrm{V}_{\text {STO }}$			0.8	1.5	V
Forward limiter voltage		$\mathrm{V}_{\mathrm{L}}{ }^{+}$	$\mathrm{R}_{\mathrm{f}}=1.8 \Omega$	0.45	0.53	0.61	V
Reverse limiter voltage		V^{-}	$\mathrm{R}_{\mathrm{f}}=1.8 \Omega$	0.45	0.53	0.61	V
[Phase comparator block]							
Output high level voltage		$\mathrm{V}_{\text {PDH }}$	No external load	$\mathrm{V}_{\text {REG }}-0.4$			V
Output low level voltage		$\mathrm{V}_{\mathrm{PDL}}$	No external load			0.4	V
Output source current		IPD^{+}		0.4			mA
Output sink current		IPD^{-}		2.5			mA
[Error amplifier block]							
Input bias current		$\mathrm{I}_{\mathrm{B}}(\mathrm{ER})$				1	$\mu \mathrm{A}$
Input offset voltage		V_{10} (ER)		-10		+10	mV
Output high level voltage		$\mathrm{V}_{\text {ERH }}$	No external load	5.5			V
Output low level voltage		$\mathrm{V}_{\text {ERL }}$	No external load			1.0	V
[Lock detector block]							
Output saturation voltage		$\mathrm{V}_{\text {LD }}$ (sat)	$\mathrm{I}_{\mathrm{LD}}=10 \mathrm{~mA}$			0.4	V
[FG amplifier block]							
Input bias current		$\mathrm{I}_{\mathrm{B}}(\mathrm{FG})$				1	$\mu \mathrm{A}$
Input offset voltage		V_{IO} (FG)		-10		+10	mV
Output high level voltage		$\mathrm{V}_{\text {FGH }}$	No external load	5.0			V
Output low level voltage		$\mathrm{V}_{\mathrm{FGL}}$	No external load			2.0	V
[FG Schmitt block]							
Input operating level		$\mathrm{V}_{\text {IS }}$	$\mathrm{FG}_{\text {OUT }}{ }^{1}$ generation signal	160			mVp-p
Input hysteresis (high \rightarrow low)		$\mathrm{V}_{\text {SHL }}$	External clock, braking stopped mode		0		mV
Input hysteresis (low \rightarrow high)		$\mathrm{V}_{\text {SLH }}$	External clock, braking stopped mode		36		mV
Hysteresis		$\mathrm{V}_{\mathrm{FGS}}$		18	36	60	mV
Output saturation voltage		$\mathrm{V}_{\mathrm{FG} 2}$ (sat)	$\mathrm{I}_{\mathrm{FG} 2}=10 \mathrm{~mA}$			0.4	V
						ntinued on	ext page

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
[FG switching setting]						
Single Hall FG operating level	$\mathrm{V}_{\text {FGIH }}$	FG ${ }_{\text {IN }}$ pin voltage	$\mathrm{V}_{\text {REG }}-0.1$		$\mathrm{V}_{\text {REG }}$	V
Triple Hall FG operating level	$\mathrm{V}_{\text {FGIL }}$	FG ${ }_{\text {IN }}$ pin voltage	0		0.1	V
[Stop mode setting]						
FGout ${ }^{1}$ low level voltage	$\mathrm{V}_{\mathrm{FG} 1} \mathrm{~L}$				0.4	V
FGout ${ }^{1}$ low level current	$\mathrm{I}_{\mathrm{FG} 1} \mathrm{~L}$	FG ${ }_{\text {OUT }}{ }^{1}$ pin voltage $=0 \mathrm{~V}$		0.6	2.4	mA
[Current limiter]						
Reference voltage	V_{CS}	$\mathrm{R}=47 \mathrm{k} \Omega$	0.51	0.58	0.65	V
External supply range	$\mathrm{V}_{\text {CS }}(\mathrm{EX})$		0.7		3.0	V
Offset voltage	$\mathrm{V}_{\text {CSO }}$	$\mathrm{R}=47 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=1.8 \Omega$	25	50	90	mV
[Signal block]						
Internal oscillator frequency	$\mathrm{f}_{\text {OSC }}$	Crystal oscillator mode	1		12	MHz
External input frequency	$\mathrm{f}_{\text {REF }}$	External clock mode	30		5000	Hz
Low level pin voltage	$\mathrm{V}_{\text {OSCL }}$		4.0	4.5	5.0	V
High level pin current	l OSCH		0.3	0.5	0.75	mA
[Divisor switching]						
Input high level voltage	$\mathrm{V}_{\mathrm{N} 1 \text { to }{ }_{3} \mathrm{H}}$		4.2		$\mathrm{V}_{\text {REG }}$	V
Input middle level voltage	$\mathrm{V}_{\mathrm{N} 1 \text { to } 3} \mathrm{M}$		2.1		2.9	V
Input low level voltage	$\mathrm{V}_{\mathrm{N} 1 \text { to }{ }^{\text {L }}}$		0		0.8	V
[F/R switching]						
Input high level voltage	$\mathrm{V}_{\text {FRH }}$		2.4		$\mathrm{V}_{\text {REG }}$	V
Input low level voltage	$\mathrm{V}_{\text {FRL }}$		0		1.5	V
High level input current	$\mathrm{I}_{\text {FRH }}$	F / R pin voltage $=\mathrm{V}_{\mathrm{REG}}$			0.22	mA
[S/B switching]						
Input high level voltage	$\mathrm{V}_{\text {SBH }}$		2.4		$\mathrm{V}_{\text {REG }}$	V
Input low level voltage	$\mathrm{V}_{\text {SBL }}$				1.5	V
Hysteresis (high \rightarrow low)	$\mathrm{DV}_{\text {SB }}$		0.15	0.25	0.35	V
[Stop detection]						
Count setting	$\mathrm{S}_{\mathrm{CT}}{ }^{1}$	FG mode		32		
	$\mathrm{S}_{\mathrm{CT}}{ }^{2}$	Triple Hall FG mode		8		
	$\mathrm{S}_{\mathrm{CT}}{ }^{3}$	Single Hall FG mode		2		
[Undervoltage protection]						
Operating voltage	$\mathrm{V}_{\text {SD }}$		8.4	8.8	9.2	V
Hysteresis	$\mathrm{DV}_{\text {SD }}$		0.2	0.4	0.6	V
[Thermal protection]						
Operating temperature	$\mathrm{T}_{\text {SD }}$	Design target value	150	180		${ }^{\circ} \mathrm{C}$
Recovery temperature	$\mathrm{T}_{\text {SDR }}$	Design target value		140		${ }^{\circ} \mathrm{C}$
[Pin leakage currents]						
LD pin	ILD (LEAK)	Pin voltage $=30 \mathrm{~V}$			10	$\mu \mathrm{A}$
FG ${ }_{\text {OuT }} 2$ pin	$\mathrm{I}_{\text {FG2 (LEAK) }}$	Pin voltage $=30 \mathrm{~V}$			10	$\mu \mathrm{A}$
[GND pin-heat sink]						
Resistance		Design target value.			30	Ω

Pin Assignment

Pin Functions

Pin No.	Symbol	Function	Notes
1	FC	Frequency characteristics correction	A capacitor must be inserted between pin 1 and ground.
2 to 7	IN^{+}to $\mathrm{IN} 3^{+}$, $\mathrm{IN1}^{-}$to $\mathrm{IN3}^{-}$	Hall element inputs	Taken as high when $\mathrm{IN}^{+}>\mathrm{IN}^{-}$, and as low otherwise.
8 to 10	OUT1 to OUT3	Outputs	
11	R_{f}	Output current detector	A capacitor must be inserted between pin 11 and ground.
12	$\mathrm{V}_{\text {REG }}$	Stabilized power supply output	
13	LD	Phase lock detector output	On when the phase is locked. This pin is an open-collector output.
14	V_{CC}	Power supply	
15	$E_{\text {ERR }}^{\text {OUT }}$	Error amplifier output	
16	$\mathrm{ERR}_{\text {IN }}$	Error amplifier input	
17	PD	Phase comparator output	
18	V_{CS}	Current limiter reference voltage generation	
19	GND	Ground	
20	$\mathrm{FG}_{\text {IN }}$	FG amplifier input	Also functions as the Hall FG switching pin.
21	$\mathrm{FG}_{\text {OUT }}{ }^{1}$	FG amplifier output	The LB1825 goes to stop mode when pin 21 is set low.
22	FG ${ }_{\text {OUT }}{ }^{2}$	FG/Hall FG output	This pin is an open-collector output.
23	S/B	Brake command input	Braking is applied when pin 23 is set high.
24 to 26	N1 to N3	Reference frequency divisor switching	The clock divisor is set by the states of pins 24 to 26.
27	OSC	Crystal oscillator/external clock input	
28	F/R	Forward/reverse switching	

Clock Divisor Switching

Pin N1	Pin N2	Divisor (1)*I	Pin N3	Divisor (2)*I
L	L	*II	L	5
L	M	128	M	4
L	H	256	H	3
M	L	512		
M	M	1024		
M	H	2048		
H	L	4096		
H	M	8192		
H	H	16384		
ote: I. Total divisor = (divisor (1) \times divisor (2))				
PLL servo frequency = (crystal oscillator frequency)/(total divisor)				
II. External clock mode				
The PLL servo frequency = external input frequency				

A02356
Figure 1 Pin Circuit for Internal Clock Mode
Table 1: External Component Values (reference values)

Crystal (MHz)	$\mathrm{C} 1(\mathrm{pF})$	$\mathrm{C} 2(\mathrm{pF})$	$\mathrm{R}(\mathrm{k} \Omega)$
3 to 4	39	82	0.82
4 to 5	39	82	1.0
5 to 7	39	47	1.5
7 to 10	39	27	2.0

Use a crystal that has a ratio of at least 1:5 between the fundamental f0 impedance and the $3 \mathrm{f0}$ impedance.

Figure 2 Pin Circuit for External Clock Mode

F/R Switching and Phase Selection

F/R	IN1	IN2	IN3	OUT1	OUT2	OUT3
L	H	H	L	M	H	L
	H	L	L	H	M	L
	H	L	H	H	L	M
	L	L	H	M	L	H
	L	H	H	L	M	H
	L	L	H	L	L	H
H	H	H	L	M	L	H
	H	L	L	L	M	H
	H	L	H	L	H	M
	L	L	H	M	H	L
	L	H	H	H	M	L
	L	L	H	L	H	L

[^0]L: Sink

Equivalent Circuit Block Diagram

Sample Application Circuit (Polygon Mirror Motor)

Sample Application Circuit (Optical Disk Spindle Motor)

Usage Notes

1. Position detector circuit (Hall element input circuit)

The position detection circuit consists of a differential amplifier, and will operate if a differential input of $40 \mathrm{mVp}-\mathrm{p}$ (minimum) is provided. However, an input of 100 mV p-p is desirable from the standpoint of noise and other problems.
The input DC level must be within the common mode input voltage range (1.5 to $\left.\left(\mathrm{V}_{\mathrm{CC}}-1.8\right) \mathrm{V}\right)$.
2. Current limiter circuit

The output current limiter operates by holding the sink side output transistor in an unsaturated state.
The current limit value can be calculated from the following formula.
$\mathrm{I}=\mathrm{V}_{\mathrm{CS}} / \mathrm{R}_{\mathrm{f}}$
Where: $\mathrm{V}_{\mathrm{CS}}=0.58 \mathrm{~V}$ typical, $\mathrm{R}_{\mathrm{f}}=$ The value of the resistor between pin 11 and ground.
3. FG input

The following three methods can be used to input the speed signal FG from the motor.

- The signal can be input to $\mathrm{FG}_{\mathrm{IN}}$ through an amplifier. (FG mode)
- The Hall input IN1 can be used as the FG input. (single Hall FG mode)

This is set up by connecting $\mathrm{FG}_{\text {IN }}$ to $\mathrm{V}_{\text {REG }}$.

- The composite signal from the IN1, IN2 and IN3 Hall inputs can be used as the FG input. (triple Hall FG mode) This is set up by connecting $\mathrm{FG}_{\mathrm{IN}}$ to ground.

4. Reference signal input circuit

- Internal clock mode (crystal oscillator)

The values of the external components associated with the crystal oscillator must be set up according to the frequency of the oscillator. (See Table 1.) To avoid trouble with the oscillator circuit, confirm the component values used with the oscillator's manufacturer.

- External clock mode

Use the external circuit shown in Figure 2 to input the clock signal when controlling the motor speed using a reference signal with the same frequency as FG.

5. Start/stop

When driving motors such as polygon mirror motors, the motor is normally stopped by turning off motor drive and putting the motor in the free-running state. For this type of motor, set the S/B pin low and attach an external transistor at $\mathrm{FG}_{\text {OUT }} 1$ as shown in the Sample Application Circuit (Optical Disk Spindle Motor) figure to start and stop the drive. (Motor drive is turned off when $\mathrm{FG}_{\text {OUT }}{ }^{1}$ is low.)
6. Start/brake

When driving motors such as optical disk spindle motors, stopping is performed by applying some form of braking. In these applications it is necessary for the motor to decelerate briefly and come to a complete stop. See the Sample Application Circuit (Optical Disk Spindle Motor) figure for a sample circuit for this case. (The difference between this circuit and the circuit shown in the Sample Application Circuit (Optical Disk Spindle Motor) figure is the addition of the capacitor C 5 to the S / B pin start/brake circuit.)

Braking Operation

This braking circuit applies full torque reverse rotation braking (in the current limited state) directly after the S / B pin is set low while the motor is turning. After that, the reverse torque is gradually decreased (according to the time constant determined by R4 and C5) at the points where the speed falls below the values listed below. This operation brings the disk to a full stop.

```
f3H = fFG/32 (FG mode)
f3H = fFG/8 (Triple Hall FG mode) f3H: Triple Hall input composite frequency.
f3H = fFG/2 (Single Hall FG mode) fFG: The FG frequency when locked
```

Depending on the size of the disk and the motor torque the following adjustments may be required to improve the disk stopping characteristics.

1. Increase the time constant if the motor continues to rotate in the forward direction after the braking torque has gone to zero.
2. Decrease the time constant if the motor is observed to rotate in the reverse direction due to the braking operation.
3. A value of about $51 \mathrm{k} \Omega$ is recommended for R 4 . In particular, it should be under $100 \mathrm{k} \Omega$.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 1997. Specifications and information herein are subject to change without notice.

[^0]: Columns OUT1 to OUT3
 H: Source

