Monolithic Digital IC

LB1890M

FDD Spindle Motor Driver

Overview

The LB1890M is a 3-phase DD motor driver IC and is an ideal FDD spindle motor driver for 3.5 inch applications.

Functions and Features

- Three phase total wave linear driver
- Eliminates need for output electrolytic capacitor (however, depending on the motor, this may not apply)
- On-chip digital speed control
- Start/stop circuit
- Current limiter circuit
- On-chip index comparator (single HYS)
- On-chip index delay circuit
- AGC circuit
- Temperature protection circuit

Package Dimensions

unit: mm **3129-MFP36S**

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Maximum output current	I _O max1	t≦0.5	1.0	А
Steady Maximum output current	I _O max2		0.7	А
Allowable power dissipation	Pd max	Independent IC	1	W
Operating temperature	Topr		-20 to +80	°C
Storage temperature range	Tstg		-40 to +150	°C

Allowable Operating Conditions at $Ta=25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V _{CC}		4.2 to 6.5	V

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

73098HA (OT)/20593TS A8-9675, 9414 No. 4354-1/8

Electrical Characteristics at Ta = 25°C, V_{CC} = 5V

_			Ratings				
Parameter	Symbol	Conditions	min	typ	max	Unit	Note
	lcco1	$V_{CC} = 5.0V$ (Stop)		,,	0.2	mA	
Current drain		$V_{CC} = 5.0V$ (Steady)		20	30	mA	
Time changeover bias current	 				0.4	mA	
Time changeover input voltage 1	Veu		0		0.8	v	
Time changeover input voltage 2	Veill		2.0		Vcc	v	
S/S1 bias current	le/e1				0.4	mA	
S/S1 start voltage	Ve/e1		2.0		Vcc	v	
S/S1 stop voltage	Ve/e1		0		0.8	v	
S/S2 bias current	le/e2				0.1	mA	
S/S2 start voltage	Ve/62		0		0.8	v	
S/S2 stop voltage	Ve/e2		2.0		Vcc	V	
Hall-effect bias amplifier input current	- 5/52 Jup		2.0		20	υA	
In-phase input voltage range	Vh		22		$V_{00} = 0.7$	V	
Differential input voltage range	Vdif		70		250	m\/n-n	*2
	Vho				+1.0	mV	*1
Hall-Effect output voltage	Vii	l – 5mA		15	1.0	V	
	<u>чн</u> Б.,	Stop		1.0	+10	114	
	'HL Vsat1	$l_{0} = 0.354$ $V_{00} = 4.2V$		12	1.4	μ/(
(Sink plus source)	Vsat2	$l_0 = 0.704$ V $l_0 = 4.2V$		1.2	2.0	V	
Outout leak current		10 = 0.101, 400 = 4.24		1.0	+1.0	mA	
Current limiter	Vrof1		0.27	0.30	0.33	11#X	
Control amplifier voltage gain	G		0.21	0.00	0.00	dB	
				-0	.1	dD	
Integrated emplifier integral reference voltage				V /0	±I	ив	
Integrated amplifier internal reference voltage	Vieiz			VCC/2		V	
Integrated amplifier blas current				0.75	±1	μΑ	
Integrated output voltage amplitude	Vi-	II = -0.5 mA with reference of Vref2		-1.4		V	
Gain band width				1000		kHz	*1
FG amplifier input voltage	V _{EG}		5		100	mVp-p	
FG amplifier voltage gain	G _{FG}	Open loop		60		dB	*1
FG amplifier input offset	V _{FG} 0				±10	mV	
FG amplifier internal reference voltage	VEGR		2.20	2.50	2.80	V	
	∆Vsh1	"H" → "L"		25		mV	*1
Schmitt hysteresis width	∆Vsh2	$``L" \to ``H"$		25		mV	*1
Schmitt input operation level	Vsh		1		V _{CC} -1	V	
Speed disk recount number	N			992			
Disk recount out "L" level voltage	V _{DL}	I _D = -0.5mA			0.3	V	
Disk recount out "H" level voltage	V _{DH}	I _D = 0.5mA	V _{CC} -0.4			V	
Disk recount out leak current	I _{DI}				±1.0	μA	
Disk recount operation frequency	FD				1.0	MHz	*1
Oscillation range	Fosc				1.0	MHz	*1
Index bias current	I _{IDB}				±10	μA	
In-phase input voltage range	VID		1.5		V _{CC} -0.5	V	
Hysteresis setting current range			5	10	15	μA	
Index output "L" level voltage	VIDI	V _{ID} = 5V			0.4	V	
Index output "H" level voltage	VIDH	V _{ID} = 5V	4.5			V	
Break-down voltage		V _{ID} = 5V		2.50		V	
Delay output "L" level voltage	VDU	V _{ID} = 5V			0.4	V	
Delay output "H" level voltage	V _{DI H}	V _{ID} = 5V	4.5	<u> </u>		V	
Excessive heat protected operating temperature	TSD		150	180		°C	*1
Hysteresis width	∆TSD			40		°C	*1

Note: *1) Marked values (*1) are guaranteed by the design itself and therefore do not require measurement. *2) When hall-effect input becomes larger, kick-back occurs to the output waveform and for this reason, 200 m Vp-p or less is recommended.

LB1890M

Pin Description

			Unit (resistance: Ω)					
Pin No.	Symbol	Pin voltage	Equivalent circuit	Pin description				
5 6 7 8 9 10	W- W+ V- V+ U- U*	2.2V min V _{CC} –0.7V max	6 200 10 77 9 10 77 9 10 77 9 10 77 77 9 10 77 77 9	 W-phase hall-effect input pin. W+ > W⁻ is established when logic is at an "H" level. V-phase hall-effect input pin. V+ > V⁻ is established when logic is at an "H" level. U-phase hall-effect input pin. U+ > U⁻ is established when logic is at an "H" level. 				
11	НВ	1.5V typ (I _H = 5mA)	O VCC	 Minus pin for hall-effect bias. When stopped, switches open and hall- effect bias severs. 				
12	FC			 Frequency characteristics revision pin By installing a capacitor between this pin and GND, close-loop oscillation for the current control system halts. 				
13 14	+ -	1.5V min V _{CC} –0.5V max	200 - Vcc 12 - 200 - 11 = 10,и А - 777 - 777 - 777 - 777	 Index input pin. When the I⁺ pin is at an "L" level, I1 operates with the fixed current of I1 = 10 μA and when at an "H" level, I1 does not flow. Hysteresis width is determined by the resistor attached externally to the I⁺ pin. 				
15	SL	"L": 0.8V max "H": 2.0V min	(15) 50 k 50 k 50 k 50 k 50 k 50 k 50 k 50 k	Time changeover pin. 1 : 1.2 "L" level : "H" level				
17	X1		€ 0 VCC 17 + 00	Reference clock generating pin.				
18	X2							
19	GND			Ground pin. Grounded as with pins 1 and 36.				

Continued on next page.

Continue	d from precedin	g page.	Unit (resistance: Ω)
Pin No.	Symbol	Pin voltage	Equivalent circuit	Pin description
20	ID	"L": 0.4V max "H": 4.5V min (When V _{ID} equals 5 V)	0 V _{ID} 10 k 20 → 10 k 20	Index pulse output pin.
21	DT1			Pin connecting the external CR for the delay time constant circuit.
22	DT2			Break-down current setting pin for the delay time constant circuit.
23	DTO	"L": 0.4V max "H": 4.5V min (When V _{ID} equals 5 V)	0 V I D 10 k 10 k 23 → 10 k 23 → 10 k 23	 Index delay pulse output pin.
24	FG0			• FG amplifier output pin.
25	FG-			FG amplifier negative input pin.
26	FG+	2.48V (When V _{ID} equals 5 V)		 FG amplifier positive input pin. Generates reference voltage within IC.
27	S/S1	"L": 0.8V max "H": 2.0V min	50k 50k 27) 50k 27) 50k 27)	• Start/stop changeover pin. "H" level active.
28	S/S2	"L": 0.8V max "H": 2.0V min	20 k 20 k 20 k 20 k 20 k 20 k 20 k 20 k	• Start/stop changeover pin. "L" level active.

LB1890M

Continue	d from preceding	, page.	Unit (resistance: Ω)			
Pin No.	Symbol	Pin voltage	Equivalent circuit	Pin description		
29	DO			 Speed discriminator output pin. 		
30	IAI		30 → 30 → 31 → 3	Integrated amplifier input pin.		
31	IAO		³⁹ ≶ ^m → → → → → → → → → → → → → → → → → → →	Integrated amplifier output pin.		
32	VID		0 VCC	 Index pulse output and index delay pulse output power supply pin. For applications when V_{CC} equals 5 V, V_{CC} = V_{ID} = 5 V. 		
33	V _{CC}			 Total power supply voltage pin except for V_{ID}. Voltage must be stable and free of ripple and noise interference. 		
34	R _f			• Output current detection pin. By installing an R_f resistor between this pin and V_{CC} , output current is detected as voltage. Voltage detection at this pin activates the current limiter.		
35	U _{OUT}			U-phase output pin.		
36	Pow GND			Output transistor ground pin.		
1	Sub GND			Ground pin. Grounded as with pins 19 and 36.		
2 3	V _{OUT} W _{OUT}			V-phase output pin.W-phase output pin.		
4	AGC			AGC pin. Controls hall-effect amplifier gain in response to hall-effect input frequency.		

Truth Table

		Hall-Effect Input			
		U	V	W	
1	V-phase \rightarrow W-phase	н	н	L	
2	V-phase \rightarrow U-phase	L	Н	L	
3	W-phase \rightarrow U-phase	L	н	н	
4	W-phase \rightarrow V-phase	L	L	Н	
5	U-phase \rightarrow V-phase	Н	L	Н	
6	U-phase \rightarrow W-phase	н	L	L	

When an "H" level exists for hall-effect input,

 $U^{\scriptscriptstyle +} > U^{\scriptscriptstyle -}$

 $V^{\scriptscriptstyle +} > V^{\scriptscriptstyle -}$

 $W^{\scriptscriptstyle +} > W^{\scriptscriptstyle -}$

Index and Timing Chart

When SL equals an "H" level,

• T' ≈ 0.693CR6

$$\bullet t' \approx \frac{CR6R7}{R6+R7} \left\{ \ 0.405 + 1n \left(\frac{R6-R7}{R6-2R7} \right) \right\}$$

When SL equals an "L" level,

• T'
$$\approx 0.577 \text{CR6}$$

• t' $\approx \frac{\text{CR6R7}}{\text{R6} + \text{R7}} \left\{ 0.522 + \ln \left(\frac{0.781 \text{R6} - \text{R7}}{\text{R6} - 2 \text{R7}} \right) \right\}$

Using only the ID pulse involves shorting DT1 and DT2.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1998. Specifications and information herein are subject to change without notice.