

Overview

The LB1890M is a 3-phase DD motor driver IC and is an ideal FDD spindle motor driver for 3.5 inch applications.

Functions and Features

- Three phase total wave linear driver
- Eliminates need for output electrolytic capacitor (however, depending on the motor, this may not apply)
- On-chip digital speed control
- Start/stop circuit
- Current limiter circuit
- On-chip index comparator (single HYS)
- On-chip index delay circuit
- AGC circuit
- Temperature protection circuit

Specifications

Package Dimensions

unit: mm
3129-MFP36S

Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}{ }^{\boldsymbol{}} \mathbf{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {CC }}$ max		7.0	V
Maximum output current	l_{0} max1	$t \leq 0.5$	1.0	A
Steady Maximum output current	10 max2		0.7	A
Allowable power dissipation	Pd max	Independent IC	1	W
Operating temperature	Topr		-20 to +80	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

Allowable Operating Conditions at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V_{CC}		4.2 to 6.5	V

Electrical Characteristics at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}$

Parameter	Symbol	Conditions	Ratings			Unit	Note
			min	typ	max		
Current drain	ICCO^{1}	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (Stop)			0.2	mA	
	$\mathrm{I}_{\mathrm{CC}}{ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (Steady)		20	30	mA	
Time changeover bias current	$\mathrm{I}_{\text {SL }}$				0.4	mA	
Time changeover input voltage 1	$\mathrm{V}_{\text {SLL }}$		0		0.8	V	
Time changeover input voltage 2	$\mathrm{V}_{\text {SLH }}$		2.0		V_{CC}	V	
S/S1 bias current	$\mathrm{I}_{\mathrm{S} / \mathrm{S} 1}$				0.4	mA	
S/S1 start voltage	$\mathrm{V}_{\mathrm{S} / \mathrm{S} 1}$		2.0		V_{CC}	V	
S/S1 stop voltage	$\mathrm{V}_{\mathrm{S} / \mathrm{S} 1}$		0		0.8	V	
S/S2 bias current	$\mathrm{I}_{\mathrm{S} / \mathrm{S} 2}$				0.1	mA	
S/S2 start voltage	$\mathrm{V}_{\mathrm{S} / \mathrm{S} 2}$		0		0.8	V	
S/S2 stop voltage	$\mathrm{V}_{\mathrm{S} / \mathrm{S} 2}$		2.0		V_{CC}	V	
Hall-effect bias amplifier input current	l_{HB}				20	$\mu \mathrm{A}$	
In-phase input voltage range	Vh		2.2		$\mathrm{V}_{C C}-0.7$	V	
Differential input voltage range	Vdif		70		250	mVp-p	*2
Input offset voltage	Vho				± 1.0	mV	*1
Hall-Effect output voltage	V_{H}	$\mathrm{I}_{\mathrm{H}}=5 \mathrm{~mA}$		1.5	1.8	V	
Leak current	I_{HL}	Stop			± 10	$\mu \mathrm{A}$	
Output saturation voltage (Sink plus source)	Vsat1	$\mathrm{I}_{\mathrm{O}}=0.35 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.2 \mathrm{~V}$		1.2	1.4	V	
	Vsat2	$\mathrm{I}_{\mathrm{O}}=0.70 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.2 \mathrm{~V}$		1.5	2.0	V	
Output leak current	l_{OL}				± 1.0	mA	
Current limiter	Vref1		0.27	0.30	0.33	V	
Control amplifier voltage gain	G_{C}			-6		dB	
Voltage gain phase differential	$\triangle \mathrm{G}_{\mathrm{C}}$				± 1	dB	
Integrated amplifier internal reference voltage	Vref2			$\mathrm{V}_{\mathrm{CC}} / 2$		V	
Integrated amplifier bias current	lib				± 1	$\mu \mathrm{A}$	
Integrated output voltage amplitude	Vi^{+}	$\mathrm{li}=-0.5 \mathrm{~mA}$ with reference of Vref2		0.75		V	
	Vi-	$\mathrm{li}=0.5 \mathrm{~mA}$ with reference of Vref2		-1.4		V	
Gain band width				1000		kHz	*1
FG amplifier input voltage	V_{FG}		5		100	mVp-p	
FG amplifier voltage gain	G_{FG}	Open loop		60		dB	*1
FG amplifier input offset	$\mathrm{V}_{\mathrm{FG}} 0$				± 10	mV	
FG amplifier internal reference voltage	$\mathrm{V}_{\mathrm{FGB}}$		2.20	2.50	2.80	V	
Schmitt hysteresis width	$\triangle \mathrm{V}$ sh1	"H" \rightarrow "L"		25		mV	*1
	$\triangle \mathrm{V}$ sh2	"L" \rightarrow " ${ }^{\text {" }}$		25		mV	*1
Schmitt input operation level	Vsh		1		$\mathrm{V}_{\mathrm{CC}}{ }^{-1}$	V	
Speed disk recount number	N			992			
Disk recount out "L" level voltage	V_{DL}	$\mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~mA}$			0.3	V	
Disk recount out "H" level voltage	V_{DH}	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V	
Disk recount out leak current	I_{DI}				± 1.0	$\mu \mathrm{A}$	
Disk recount operation frequency	F_{D}				1.0	MHz	*1
Oscillation range	$\mathrm{F}_{\text {OSC }}$				1.0	MHz	*1
Index bias current	IIDB				± 10	$\mu \mathrm{A}$	
In-phase input voltage range	$\mathrm{V}_{\text {ID }}$		1.5		$\mathrm{V}_{\mathrm{CC}}-0.5$	V	
Hysteresis setting current range	I IDO		5	10	15	$\mu \mathrm{A}$	
Index output "L" level voltage	$\mathrm{V}_{\text {IDL }}$	$\mathrm{V}_{\mathrm{ID}}=5 \mathrm{~V}$			0.4	V	
Index output "H" level voltage	$\mathrm{V}_{\text {IDH }}$	$\mathrm{V}_{\text {ID }}=5 \mathrm{~V}$	4.5			V	
Break-down voltage	$\mathrm{V}_{\text {DLDC }}$	$\mathrm{V}_{\text {ID }}=5 \mathrm{~V}$		2.50		V	
Delay output "L" level voltage	$\mathrm{V}_{\text {DLL }}$	$\mathrm{V}_{\mathrm{ID}}=5 \mathrm{~V}$			0.4	V	
Delay output " H " level voltage	$\mathrm{V}_{\text {DLH }}$	$\mathrm{V}_{\mathrm{ID}}=5 \mathrm{~V}$	4.5			V	
Excessive heat protected operating temperature	TSD		150	180		${ }^{\circ} \mathrm{C}$	*1
Hysteresis width	$\triangle T S D$			40		${ }^{\circ} \mathrm{C}$	*1

Note: *1) Marked values (*1) are guaranteed by the design itself and therefore do not require measurement.
*2) When hall-effect input becomes larger, kick-back occurs to the output waveform and for this reason, 200 m Vp-p or less is recommended.

LB1890M

Pin Assignment

Block Diagram

LB1890M

Pin Description

Continued on next page.

LB1890M

Continued from preceding page.
Unit (resistance: Ω)

Pin No.	Symbol	Pin voltage	Equivalent circuit	Pin description
20	ID	$\begin{aligned} & \text { "L": } 0.4 \mathrm{~V} \text { max } \\ & \text { " } \mathrm{H} \text { ": } 4.5 \mathrm{~V} \text { min } \\ & \left(\mathrm{When} \mathrm{~V}_{\mathrm{ID}}\right. \\ & \text { equals } 5 \mathrm{~V} \text {) } \end{aligned}$		- Index pulse output pin.
21	DT1			- Pin connecting the external CR for the delay time constant circuit.
22	DT2			- Break-down current setting pin for the delay time constant circuit.
23	DTO	$\begin{aligned} & \text { "L": } 0.4 \mathrm{~V} \text { max } \\ & \text { " } \mathrm{H} \text { ": } 4.5 \mathrm{~V} \text { min } \\ & \text { (When } \mathrm{V}_{\mathrm{ID}} \\ & \text { equals } 5 \mathrm{~V} \text {) } \end{aligned}$		- Index delay pulse output pin.
24	FG0			- FG amplifier output pin.
25	FG-			- FG amplifier negative input pin.
26	FG+	$\begin{aligned} & 2.48 \mathrm{~V} \\ & \text { (When } \mathrm{V}_{\text {ID }} \\ & \text { equals } 5 \mathrm{~V} \text {) } \end{aligned}$		- FG amplifier positive input pin. Generates reference voltage within IC.
27	S/S1	$\begin{aligned} & \text { "L": 0.8V max } \\ & \text { "H": } 2.0 \mathrm{~V} \text { min } \end{aligned}$		- Start/stop changeover pin. "H" level active.
28	S/S2	$\begin{aligned} & \text { "L": } 0.8 \mathrm{~V} \text { max } \\ & \text { "H": } 2.0 \mathrm{~V} \text { min } \end{aligned}$		- Start/stop changeover pin. "L" level active.

LB1890M

Continued from preceding page. Unit (resistance: Ω)

Pin No.	Symbol	Pin voltage	Equivalent circuit	Pin description
29	DO			- Speed discriminator output pin.
$\begin{array}{r}30 \\ \\ \hline 31\end{array}$	IAI			- Integrated amplifier input pin.
31	IAO			- Integrated amplifier output pin.
32	VID			- Index pulse output and index delay pulse output power supply pin. For applications when V_{CC} equals 5 V , $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{ID}}=5 \mathrm{~V}$.
33	V_{CC}			- Total power supply voltage pin except for V_{ID}. Voltage must be stable and free of ripple and noise interference.
34	R_{f}			- Output current detection pin. By installing an R_{f} resistor between this pin and V_{CC}, output current is detected as voltage. Voltage detection at this pin activates the current limiter.
35	$\mathrm{U}_{\text {OUT }}$			- U-phase output pin.
36	Pow GND			- Output transistor ground pin.
1	Sub GND			- Ground pin. Grounded as with pins 19 and 36.
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$V_{\text {OUT }}$ $\mathrm{W}_{\text {OUT }}$			- V-phase output pin. - W-phase output pin.
4	AGC			- AGC pin. Controls hall-effect amplifier gain in response to hall-effect input frequency.

Truth Table

	Source \rightarrow Sink	Hall-Effect Input		
		U	V	W
	V-phase \rightarrow W-phase	H	H	L
2	V-phase \rightarrow U-phase	L	H	L
3	W-phase \rightarrow U-phase	L	H	H
4	W-phase \rightarrow V-phase	L	L	H
5	U-phase \rightarrow V-phase	H	L	H
6	U-phase \rightarrow W-phase	H	L	L

When an " H " level exists for hall-effect input,
$\mathrm{U}^{+}>\mathrm{U}^{-}$
$\mathrm{V}^{+}>\mathrm{V}^{-}$
$\mathrm{W}^{+}>\mathrm{W}^{-}$

Index and Timing Chart

When SL equals an "H" level,

- $\mathrm{T}^{\prime} \approx 0.693 \mathrm{CR} 6$
$\cdot \mathrm{t}^{\prime} \approx \frac{\mathrm{CR} 6 \mathrm{R} 7}{\mathrm{R} 6+\mathrm{R} 7}\left\{0.405+\ln \left(\frac{\mathrm{R} 6-\mathrm{R} 7}{\mathrm{R} 6-2 \mathrm{R} 7}\right)\right\}$
When SL equals an " L " level,
- $\mathrm{T}^{\prime} \approx 0.577 \mathrm{CR} 6$
$\bullet \mathrm{t}^{\prime} \approx \frac{\mathrm{CR} 6 \mathrm{R} 7}{\mathrm{R} 6+\mathrm{R} 7}\left\{0.522+\ln \left(\frac{0.781 \mathrm{R} 6-\mathrm{R} 7}{\mathrm{R} 6-2 \mathrm{R} 7}\right)\right\}$
Using only the ID pulse involves shorting DT1 and DT2.

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1998. Specifications and information herein are subject to change without notice.

