Monolithic Digital IC

LB1896

3-phase Brushless Motor Driver for CD-ROM Spindle Drive Use

Overview

The LB1896 is a 3-phase brushless motor driver IC that is ideal for driving CD-ROM spindle motors.

Functions and Features

- 120 ° voltage linear technique
- V-type control voltage
- · Switchable control gain
- Control, noncontrol, acceleration/deceleration mode select pins built in.
- Start/Stop pin built in, Hall bias built in.

Package Dimensions

unit : mm

3219-QFP34H-C

Specifications

Absolute Maximum Ratings at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
	V _{CC} 1 max		20	V
	V _{CC} 2 max		7.0	V
Applied output voltage	V _{OU, V, W}		20	V
Output current	IOUT		1.2	А
Allowable power dissipation	Pd max	Independent IC	0.77	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co.,Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Operating Conditions at Ta = $25 \ ^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} 1		5 to 18	V
Supply voltage	V _{CC} 2	$V_{CC}1 \ge V_{CC}2$	4.3 to 6.5	V
V _{Cref} input voltage	V _{Cref}		V _{CC} 2/2 ±1.0	V
V _{NS} input voltage	V _{NS}		0 to V _{CC} 2 –1.0	V

Electrical Characteristics at Ta = 25 °C, $V_{\rm CC}1$ = 12 V, $V_{\rm CC}2$ = 5 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply current 1	I _{CC} 1	V_{C} = open, V_{Cref} = open, R_{L} = ∞, $V_{S/S}$ = 5 V		17	30	mA
Supply current 2	I _{CC} 2	V _C = open, V _{Cref} = open		7.5	10.5	mA
Supply current 3	I _{CC} 3	V_{C} = open, V_{Cref} = open, R_{L} = ∞ , $V_{S/S}$ = 0 V, (I _{CC} of V _{CC} 1)		0.9	3	mA
[Drive block]	•		•	•		
Output saturation voltage	V _{O(sat)} 1	$I_{OUT} = 0.4 \text{ A}, \text{ sink + source}$		1.6	2.2	V
	V _{O(sat)} 2	I _{OUT} = 0.8 A, sink + source		2.0	3.0	V
Output TRS sustaining voltage	V _{O(sus)}	I _{OUT} = 20 mA	20			V
Output static voltage	V _{OQ}	$V_{C} = 2.5 \text{ V}, V_{Cref} = 2.5 \text{ V}$	5.7	6.0	6.3	V
Hall amplifier input offset voltage	V _{H offset}		-5		+5	mV
Hall amplifier input bias current	I _{H bias}			1	5	μA
Hall amplifier common-mode input voltage range	V _{Hch}		1.3		2.2	V
Hall input/output voltage gain	G _{VHO}		40	43	46	dB
Control/output drive gain 1	G _{VCO} 1	RZ1 = RZ2, GC1 = L, GC2 = L	26	29		dB
Control/output channel difference 1	∆G _{VCO} 1	RZ1 = RZ2, GC1 = L, GC2 = L	-1.5		+1.5	dB
Control/output drive gain 2	G _{VCO} 2	RZ1 = RZ2, GC1 = L, GC2 = H	32	35		dB
Control/output channel difference 2	ΔG_{VCO}^2	RZ1 = RZ2, GC1 = L, GC2 = H	-1.9		+1.9	dB
Input dead zone voltage	V _{DZ}	RZ1 = RZ2, GC1 = L, GC2 = L V _O (voltage between out and out) = 0.1 V	±13	±38	±55	mV
Input bias current 1	IB SERVO	V _C = 1.0 V			500	nA
Input bias current 2	I _{B n.s}	V _{NS} = 1.0 V			500	nA
S/S pin high voltage	V _{S/S H}	Input is CMOS level	4			V
S/S pin low voltage	V _{S/S L}	Note) S/S pin Vth = V _{CC} 2/2			1	V
Gain control 1 high voltage	V _{GC1 H}	Input is at CMOS level.	4			V
Gain control 1 low voltage	V _{GC1 L}	Note) GC1 pin Vth = 2.0 V			1	V
Gain control 2 high voltage	V _{GC2 H}	Input is at CMOS level.	4			V
Gain control 2 low voltage	V _{GC2 L}	Note) GC2 pin Vth = 2.0 V			1	V
S/S pin input current	I _{S/S}	Input voltage = 5 V		50	100	μA
Gain control 1, 2 current	I _{GC}	Input voltage = 5 V		53	110	μA
Rotation output saturation voltage	V _(sat) H.FG	$I_0 = -5 \text{ mA}$		0.24	0.5	V
Rotation output saturation sustaining voltage	V _(sus) H.FG				7	V

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
Hall bias voltage	V _H ±	$I_{O} = 5 \text{ mA}, R_{H} = 200 \Omega$	0.7	0.97	1.2	V
CTRL pin high voltage	V _{CTRL H}	Common for CTRL1 and CTRL2 input CMOS level	4			V
CTRL pin low voltage	V _{CTRL L}	Note) CTRL pin Vth = 2.5 V			1.0	V
CTRL input current	ICTRL	Input voltage = 5 V		53	110	μA
TSD operation voltage	TSD	Design target	150	180	210	°C
TSD hysteresis	ΔTSD	Design target		15		°C

Note) Vth is a design target and not measured.

Mode Switching Truth Table

CTRL0	CTRL1	Mode
L	L	Control
L	Н	Noncontrol
Н	L	Acceleration
Н	Н	Deceleration

L = 0 to 1.0 V

H = 4.0 V or more

Hall Logic Truth Table

	Source Sink		Hall input	E/P Control	
		U _{IN}	V _{IN}	W _{IN}	
1	$W \rightarrow V$		Н	L	Forward
'	V o W				Reverse
2	$W \rightarrow U$	ц	L	L	Forward
2	$U\toW$	н			Reverse
3	$\begin{array}{c} V \to W \\ W \to V \end{array}$	L	L	Н	Forward
					Reverse
4	$\begin{array}{c} U \rightarrow V \\ V \rightarrow U \end{array}$	L	Н	L	Forward
4					Reverse
F	$V \rightarrow U$	Н	L	н	Forward
5	$U\toV$				Reverse
6	U ightarrow W	L	н		Forward
	$W \rightarrow U$			LI LI	Reverse

An input is considered to be HIGH when $U_{IN}1 > U_{IN}2$, $V_{IN}1 > V_{IN}2$, and $W_{IN}1 > W_{IN}2$ by 0.2 V or more. Forward when $V_C > V_{Cref}$ Reverse when $V_C < V_{Cref}$

Pin Assignment

Pin Functions

Pin No.	Pin Name	Pin Voltage	Equivalent Circuit Diagram	Pin Function
3, 4 20, 21	Frame GND			Frame GND. GND must be shared.
2	GND			GND
23 22 19	Uout Vout Wout		OVCC1 (23) (19) (19) (19) (19) (19) (19) (19) (19) (19) (19) (19) (19) (19) (10)	Output pins. Motor connection
			A04490	
17	Rf		OV _{CC2} 17)Rf	Output Tr GND. A resistor can be connected between this pin and GND to sense the output current as a voltage drop to provide for overcurrent protection.
18, 24	NC			Idle pins.
16	V _{CC} 2	4.3 to 6.5 V		 Power supply for blocks other than the output block. This supply should be kept stable to prevent ripple and noise from entering this pin.
15 14	Z1 Z2			 First-stage amplifier gain setting resistors. Z1 and Z2 normally range from several tens of kΩ to several hundreds of kΩ. The gain is about 6 dB.
			A04492	

Continued on next page.

Continued from preceding page.

Pin No.	Pin Name	Pin Voltage	Equivalent Circuit Diagram	Pin Function
13 12	V _C V _{Cref}	V _{CC} 2/2 ±1.0	VCC2 VCC2 VCC2 (13) (12) GND AD4493	 V_C is the speed control pin. Forward when V_C > V_{Cref}. Reverse when V_C < V_{Cref}. V_C is used to control the output voltage. V_{Cref} determines the motor control stop voltage. V_{CC}2/2 in normal use.
11 10	GC1 GC2	0 to V _{CC} 2	VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2	 Input/output gain switching pins. GC1 is for first-stage amplifier Z1/Z2 switching. When GC1 is LOW, Z1 is selected; when HIGH, Z2 is selected. GC2 is for next-stage amplifier switching.
9 8	CTRL¢ CTRL1	0 to V _{CC} 2	VCC2 VCC2 (3) (8) "" "" " A04495	 Operation mode switching pins. Refer to the Mode Switching Truth Table for selection of control, acceleration, or deceleration.
7	NS+	0 to V _{CC} 2 – 1 V	VCC2	 Input pin at noncontrol mode. The input-output gain is 14 dB. (GC2: LOW) Motor stops when V_{NS} = 0 V.
6	S/S	0 to V _{CC} 2	€ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	 When the S/S pin is HIGH, START; when LOW, STOP. The threshold is V_{CC}2/2.

Continued on next page.

Continued from preceding page.

Pin No.	Pin Name	Pin Voltage	Equivalent Circuit Diagram	Pin Function
5	FC		5 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Connect a capacitor between this pin and GND to reduce the input/output gain frequency response and to stop the oscillator.
1 34 33 32 31 30	W _{IN} 2 W _{IN} 1 V _{IN} 2 V _{IN} 1 U _{IN} 2 U _{IN} 1	1.3 to 2.2 V	VCC2 Image: Constraint of the second seco	W-phase Hall device input pins. Logic "H" represent $W_{IN}1 > W_{IN}2$ V-phase Hall device input pins. Logic "H" represent $V_{IN}1 > V_{IN}2$ U-phase Hall device input pins. Logic "H" represent $U_{IN}1 > U_{IN}2$
29 28	VH+ VH–	2.4 V 1.4 V	(2B) (2B) (2B) (2B) (2B) (2B) (2B) (2B)	 Hall device power supply pins. A voltage difference of 1.0 V is developed between VH+ and VH
27	H.FG	0 to V _{CC} 2	VCC2 VCC2 (27) (27) (27) (27) (27) (27) (27) (27	 Hall FG pin. The Hall waveform is converted into a pulse signal and then used as the FG pulse signal.
26	CL	0 to V _{CC} 2	CC2 CC2 CC2	 When the Rf pin voltage becomes equal to the C_L pin voltage, the current limiter operate. The C_L voltage is determined externally.
25	V _{CC} 1	5 to 18 V		 Power supply for output block. This supply should be kept stable to prevent ripple and noise from entering this pin.

Block Diagram

Sample Application Circuit

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 1996. Specifications and information herein are subject to change without notice.