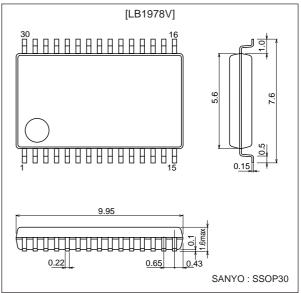
Monolithic Digital IC

LB1978V

Three-Phase Half-Wave Sensorless Motor Driver for Headphone Stereos


Functions and Features

- Three-phase sensorless motor driver
- Built-in speed control
- Built-in reference voltage and forward/reverse switching pin
- Soft switching
- Built-in short brake drive pin

Package Dimensions

unit: mm

3191-SSOP30

Specifications

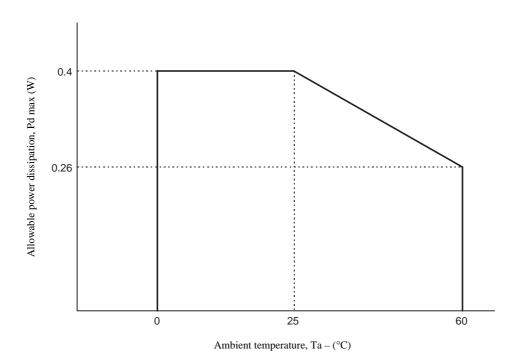
Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	Vcc max		2.0	V
Output transistor withstand voltage	Vsus		4	V
Maximum output current	lo max		0.6	А
Allowable power dissipation	Pd max	Tj = 125°C	0.4	W
Operating temperature	Topr		0 to 60	°C
Storage temperature	Tstg		-40 to +125	°C

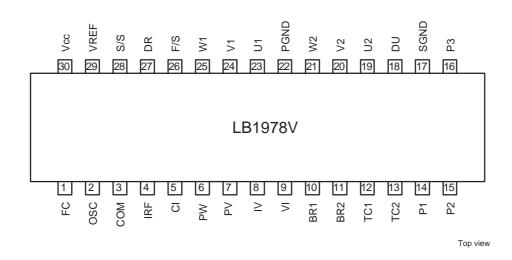
Allowable Operating Ranges at Ta = 25°C

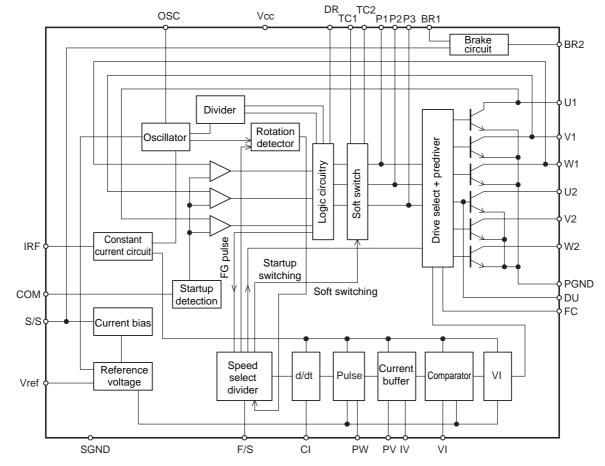
Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	Vcc		1.0 to 1.7	V

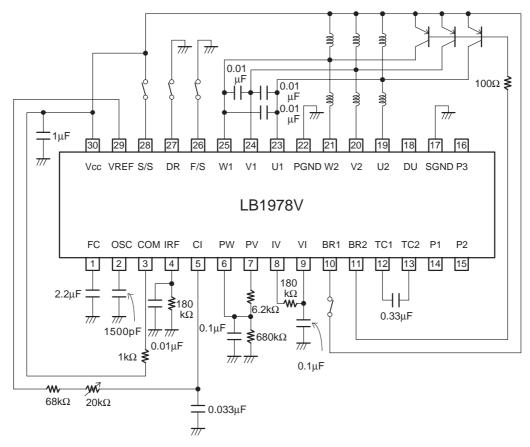
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.


SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Electrical Characteristics at Ta = 25 °C, Vcc = 1.2V, in the specified test circuit


Devenenter	Symbol Conditions		Ratings			11.2
Parameter	Symbol	Conditions	min	typ	max	Unit
Power supply current	lcc	START pin H, RIRF = 180 k Ω		6.8	10	mA
		START pin L, VBR = 0V		0	10	μΑ
Reference voltage	Vref		0.725	0.755	0.785	V
Reference voltage characteristics	$\frac{\Delta Vref}{\Delta Iref} / \Delta Vcc$	Vcc = 1.0 to 1.7V		1.0	2.0	%/V
Reference voltage load characteristics	ΔVref ΔIref	Iref = 0 to -50 μA	-0.2	-0.06		mV/μA
Oscillator cycle	T _S	C _S = 1500 pF	0.52	0.6	0.68	ms
Rotation switching load characteristics	T _{F/S}	C _S = 1500 pF, R _{IRF} = 180 kΩ *Target	7.70		10.9	ms
Rotation detection accuracy	NF/S	T _S = 0.60 ms *Target	-16		+16	%
COM voltage	V _{COM} -	$R_{COM} = 1 k\Omega$	12	25	38	mV
F side output saturation voltage	Vsat1	Vcc = 1.0V, Im = 0.3A		0.17	0.30	V
S side output saturation voltage	Vsat2	Vcc = 1.0V, Im = 0.2A		0.12	0.25	V
S/S pin input High level voltage	V _{SSH}		0.9			V
S/S pin input Low level voltage	V _{SSL}				0.3	V
F/S DR pin ON voltage	V _{Lon}				0.2	V
F/S DR pin OFF voltage	V _{Loff}		Vcc-0.3			V
TC pin pull-in voltage	V _{TC} 1	F/S = H	80	110	150	mV
	V _{TC} 2	F/S = L	160	220	300	mV
BR1 ON voltage	V _{BRon}		0.9			V
BR1 OFF voltage	V _{BRoff}				0.3	V
BRsat voltage	V _{BRsat}	lo = 6 mA, V _{BR1} = 1.2V		0.15	0.3	V
CI rise voltage	V _{CI}		0.620	0.650	0.680	V
CI hysteresis width	ΔV _{CI}		60	80	100	mV
IRF voltage	V _{IRF}	R _{IRF} = 180 kΩ	0.725	0.755	0.785	V
VI output current	I _{VI}	$V_{VI} = 0.3V, V_{IV} = GND$	26	30	34	μΑ
PV pin voltage	V _{PV}		0.720	0.755	0.785	V
ΔIFC/ΔVVI ratio	$\Delta I_{FC} / \Delta V_{VI}$		150	210	250	μA/V
Output transistor OFF voltage	V _{OUT} OFF		Vcc-0.3			V
Output transistor ON voltage	V _{OUT} ON				0.3	V


Note: Items shown to be "Target" are not measured.



Equivalent Circuit Block Diagram

Pin Description

Pin number	Pin name	Equivalent circuit	Pin function
1	FC	Vcc	Oscillator and ripple suppression pin.
		1 PGND	The higher the capacitance connected to FG, the more effectively will ripple components be suppressed.
2	OSC		Startup pulse cycle and drive switching cycle setting pin. Increased capacitance will result in higher startup pulse cycle and drive switching
			cycle.
3	СОМ	Vcc	Startup waveform detector offset setting pin. R _{COM} = 1 kΩ results in approx. 25 mV offset at startup
4	IRF	Vcc (4) (4) (4) (25µA SGND	Oscillator circuit and F-V servo circuit internal current setting pin.
5	CI	Vcc 5 SGND	Speed adjustment pin using CR oscillation based on FG pulse edge detection.

Continued on next page

Continued from preceding page

Pin number	Pin name	Equivalent circuit	Pin function
6	PW	Vcc 6 PGND	CI pin waveform and reference voltage comparator output pin.
7	PV	Vcc	Current buffer input/output pin.
8	IV	Vcc	Current-to-voltage converter comparator input pin.
9	VI	Vcc	Voltage-to-current converter input pin. Speed increases when VI pin voltage is higher than reference voltage and decreases when VI pin voltage is lower than reference voltage.
10	BRI	Vcc	Brake bias pin. When S/S pin is Low and BR1 pin is 0.9V or higher, brake drive pin BR2 goes ON.

Continued on next page

Continued from preceding page

Pin number	Pin name	Equivalent circuit	Pin function
11	BR2	Vcc (11) SGND	Brake drive pin. When S/S pin is Low and BR1 pin is 0.9V or higher, brake drive is activated. This is an open-collector output.
12 13	TC1 TC2	Vcc 12 13 SGND	Motor current rise/fall slope setting pins. Setting value changes depending on the High or Low status of the F/S pin.
14 15 16	P1 P2 P3	Vcc (14) (14) (15) (16) SGND	Internal operation measurement pins which shape the current waveform. Must be left open for use.
17	SGND		Signal ground pin. Separate from power supply ground.
18 19 20 21	DU U2 V2 W2	Vcc 13 Vcc 13 Vcc Vcc 20 21 22 PGND	DU is base pin for U low-speed output transistor. U2, V2, and W2 are pins for connection to low-speed motor coils.
22	PGND		Power supply ground.

Continued on next page

Continued from preceding page

Pin number	Pin name	Equivalent circuit	Pin function
23	U1		U1, V1, and W1 are pins for connection to
24 25	V1 W1	Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc	high-speed motor coils.
26	F/S	26 SGND	High-speed/low-speed mode select pin. Vcc –1.0V or lower: high-speed (fast) Vcc –0.3V or higher: low-speed (slow)
27	DR	27 SGND	Rotation direction select pin. Vcc –0.3V or higher: phase sequence U -> V -> W Vcc –1.0V or lower: phase sequence U -> W -> V
28	S/S	28 Vcc SGND	Start/stop pin. 0.9V or higher: Start High active.
29	Vref	Vcc 29 SGND	Reference voltage pin. Reference voltage is 0.75V.
30	Vcc		Power supply pin.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1999. Specifications and information herein are subject to change without notice.