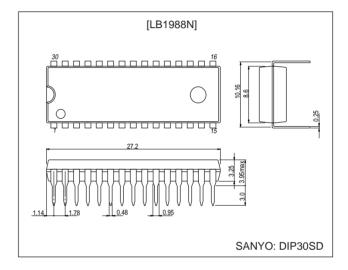


Three-Phase Sensorless Motor Driver + Loading Motor Driver

Overview

The LB1988N is a sensorless motor driver that includes an on-chip loading motor driver as well. It is optimal for VCR drum motor drive.


Functions and Features

- Soft switching drive
- Does not require Hall-effect sensors
- Does not require FG sensors
- PG amplifier
- Thermal shutdown circuit
- · Current limiter circuit
- · Loading motor driver

Package Dimensions

unit: mm

3196-DIP30SD

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	V _{CC} max		14.5	V
Maximum supply voltage 2	V _{CCL} max		14.5	V
Maximum supply voltage 3	V _{REG} max		7.0	V
Maximum applied output voltage	Vomax		14.5	V
Maximum applied input voltage	VI1max		- 0.3 to V _{REG} + 0.3	V
Maximum cylinder current	Iomax		1.0	А
Maximum loading current	Iomax (AVE)		0.4	А
Waximum loading current	Iomax (peak)		1.2	Α
Allowable power dissipation	Pdmax	When mounted on the specified printed circuit board*	2.8	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

Note: * Specified printed circuit board: 114.3 \times 76.1 \times 1.6 mm³, glass epoxy

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	Vcc		8 to 13.8	V
Supply voltage 2	V _{CCL}		8 to 13.8	V
Supply voltage 3	V _{REG}		4 to 6	V

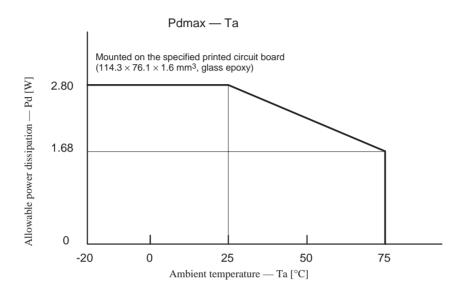
Electrical Characteristics at Ta = 25°C, V_{CC} = V_{CCL} = 12 V, V_{REG} = 5 V

Parameter	Cumbal	Symbol Conditions		Ratings			
Parameter	Symbol		min	min typ i		max Unit	
Supply voltage 1	Icc	VC = 0 V, XIN = YIN = 0 V		6.5	10	mA	
Supply voltage 2	I _{CCL}	VC = 0 V, XIN = YIN = 0 V			1	mA	
Supply voltage 3	I _{REG}	VC = 0 V, XIN = YIN = 0 V		6.5	10	mA	
Output saturation voltage 1	V _{OSAT} 1	I _O = 0.4 A, source + sink		1.4	2.0	V	
Output saturation voltage 2	V _{OSAT} 2	I _O = 0.8 A, source + sink		1.8	2.6	V	
MC pin common-mode input voltage range	V _{IC}		0		V _{CC} - 2	V	
VC pin input bias current	I _{VC}	VC = 0 V	-2	-1		μA	
Control start voltage	VTHVC	V _{RF} = 10 mV	2.4	2.5	2.6	V	
Closed loop control gain	GMVC	RF = 0.5 Ω	0.75	0.95	1.15	A/V	
PCOUT output current 1	I _{PCOU}	Source side		-90		μΑ	
PCOUT output current 2	I _{PCOD}	Sink side		90		μA	
VCOIN input current	I _{VCOIN}	VCOIN = 5 V		0.1	0.2	μA	
Minimum VCO frequency	fVCOMIN	CX = 0.022 µF, VCOIN = open		400		Hz	
Maximum VCO frequency	fVCOMAX	CX = 0.022 µF, VCOIN = 5 V		18.5		kHz	
C1/C2 source current ratio	RSOURCE	IC1SOURCE/IC2SOURCE	-12		+12	%	
C1/C2 sink current ratio	RSINK	IC1SINK/IC2SINK	-12		+12	%	
C1 source/sink current ratio	RC1	IC1SOURCE/IC1SINK	-35		+15	%	
C2 source/sink current ratio	RC2	IC2SOURCE/IC2SINK	-35		+15	%	
Thermal shutdown operating temperature	TTSD	*	150	180	210	°C	
Thermal shutdown hysteresis	ΔTTSD	*		15		°C	

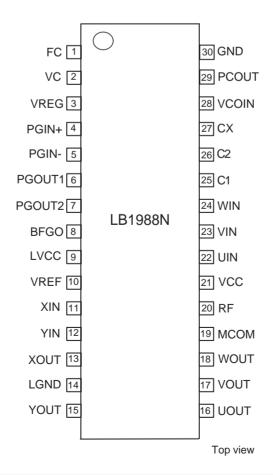
FG and PG Amplifier Block at Ta = 25°C, V_{CC} = V_{CCL} = 12 V, V_{REG} = 5 V

Parameter	Symbol Conditions -			Unit		
Parameter			min	typ	max	Offic
Back EMF FG	•					
Output on voltage	V _{OL}				0.4	V
Output off voltage	V _{OH}		4.5			V
PG amplifier	•					
Input offset voltage	V _{IO}		-8		+8	mV
Input bias current	I _{BIN}		-250			nA
Common-mode input voltage range	V _{ICOM}	*	1		3.5	V
Open-loop gain	GVPG	f = 1 kHz		55		dB
Output on voltage	V _{OL}				0.4	V
Output off voltage	V _{OH}		4.5			V
Schmitt amplifier hysteresis	V _{SHIS}		70	93	115	mV

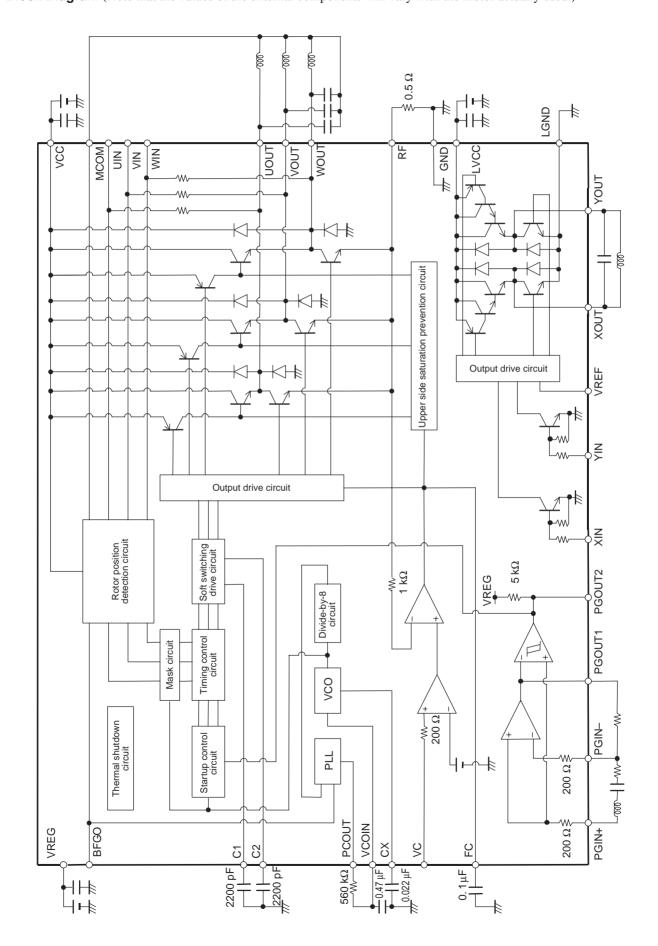
Note: Items marked with an asterisk are design target values and are not tested.


Continued from preceding page.

Loading Block at $Ta=25^{\circ}C,\,V_{CC}$ = V_{CCL} = 12 $V,\,V_{REG}$ = 5 V


Parameter		C	ah al	Conditions	Ratings			Unit
		Symbol		Conditions	min	typ	max] Unit
lonut voltage	1 (HIGH)	VII	_N 1		3.5		5	V
Input voltage	2 (LOW)	VII	_N 2		0		0.8	V
Input current		II	N	Sink, V _{IN} = 3.5 V		30	50	μA
Input hysteresis		Δ١	/T			0.7		V
		VSA	Γ U-1	Vref = VS, between the output and VS I _O = 0.2 A, CW/CCW mode		1.5	2.1	V
Saturation voltage			T L-1	Vref = VS, between the output and VS I _O = 0.2 A, CW/CCW mode		0.2	0.3	V
Saturation voltage		VSAT U-1'		Vref = VS, between the output and VS I _O = 0.4 A, CW/CCW mode		1.6	2.2	V
			Γ L-1'	Vref = VS, between the output and VS I _O = 0.4 A, CW/CCW mode		0.3	0.5	V
Upper side residual voltage		VSAT	ΓU-1"	Vref = 8 V, between the output and ground I _O = 0.2 A, CW/CCW mode	7.2	8.0	8.8	V
		VSATL-1"		Vref = 8 V, between the output and ground I _O = 0.4 A, CW/CCW mode	7.2	8.0	8.8	٧
Output transistor leakage current		up	ILU				50	μA
		down	ILL				50	μA
5: 1 () 1		up	VFU	IF = 0.4 A		1.3		V
Diode forward voltage		down	VFL	IF = 0.4 A		1.0		_ v
Control supply current		Ire	ef		-5	-2		μA

Loading Motor Truth Table


In	put	Ou	Mode	
XIN	YIN	XOUT	YOUT	iviode
L	L	Off	Off	Standby
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
Н	Н	L	L	Brake

Pin Assignment

Block Diagram (Note that the values of the external components will vary with the motor actually used.)

Pin Functions

Pin No.	Symbol	Voltage	Function	Equivalent circuit diagram
1	FC		Frequency characteristics correction. Insert a capacitor between this pin and ground to prevent closed-loop oscillation in the current control system.	VREG 1 kΩ 10 kΩ 5 kΩ
2	VC	0 V to V _{REG}	Speed control. This circuit implements a constant-current control scheme in which current feedback from the RF pin is applied.	VCC $50\mu\text{F}$ $50\mu\text{F}$ $27\text{k}\Omega$ 40k $24\text{k}\Omega$
3	VREG	4 V to 6 V	Control system power supply. This power supply must be stabilized to prevent ripple or other noise entering the circuit.	
4	PGIN+		PG amplifier + input. This input is biased at 1/2 VREG internally.	VREG 6μF 6μF \$10 kΩ
5	PGIN-		PG amplifier - input.	200 Ω 200 Ω 5 10 kΩ
6	PGOUT1		PG amplifier linear output.	VREG 60 μF 38 Ω 5 kΩ 5 kΩ 4

Continued from preceding page.

Pin No.	Symbol	Voltage	Function	Equivalent circuit diagram
7	PGOUT2		PG Schmitt amplifier output.	VREG+VF—VREG 100 μA V \$5 kΩ
8	BFGO		Motor back EMF detection FG output (3-phase synthesized).	7)(8)
9	LVCC	8 to 13.8 V	Loading motor driver output transistor power supply.	
10	VREF	0 to V _{CCL}	Loading motor driver output voltage setting.	VCCL 13 15 1 mA 1
11	XIN	0 V to V _{REG}	Loading mater driver logic input	VREG 100 kΩ 12
12	YIN	O V to VREG	Loading motor driver logic input.	50 kΩ \$ 777
13	XOUT		Loading motor driver output.	9 (13) (15)
15	YOUT		Loading motor driver output.	2 kΩ 2 kΩ 14 //// 10
14	LGND		Loading motor driver output transistor ground.	

Continued from preceding page.

Pin No.	Symbol	Voltage	Function	Equivalent circuit diagram
16	VOUT		Drum motor driver output.	VCC 3.9 Ω 10 kΩ 20 μF
18	WOUT			30 kΩ
20	RF		Lowest potential of the drum motor driver output transistor. Constant-current control is implemented by detecting this voltage. The current limiter also functions by detecting this voltage.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
21	VCC	8 to 13.8 V	Internal reference voltage and power supply for the drum motor driver output block and coil waveform detection circuit.	
19	МСОМ		Motor coil midpoint input. This voltage is used as the reference voltage in coil voltage waveform detection.	VCC (16(17/18) (19) (20) Ω (19) (20) Ω (19) (19) (19) (19) (19) (19) (19) (19)
22	UIN			24 2 kΩ 200 Ω 200 Ω 200 Ω
23	VIN		Coil waveform detection comparator inputs. These are connected to each of the phase outputs though internal 10-k Ω resistors.	
24	WIN			
25	C1		Triangular waveform generator capacitor connection. The triangular waveform generated using this pin is	VREG 15 μF 15 μF 25 5 μF
26	C2		used to implement soft switching for the coil output waveforms.	1 kΩ 1/2V _{REG} -VF
27	сх		The value of the capacitor connected between this pin and ground in the VCO circuit determines the operating frequency range and the minimum operating frequency.	VREG 100 μA

Continued from preceding page.

Pin No.	Symbol	Voltage	Function	Equivalent circuit diagram
28	VCOIN		VCO circuit control voltage input. The PCOUT pin voltage is applied to this pin through an RC filter.	10 kΩ \$ 1.75 V 28 50 kΩ 150 μA 50 μA
29	PCOUT		VCO circuit PLL output.	VREG 29
30	GND		Ground used for all circuits other than the drum and loading motor driver output transistors.	

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1999. Specifications and information herein are subject to change without notice.