Ordering number: EN 3410C



#### **Overview**

The LC58E68 is a 4-bit microprocessor with built-in 16 Kbytes of EPROM, 1 Kbit of RAM and LCD drivers. It can perform most of the functions of the LC586X series single-chip microprocessors, making it ideal for prototyping systems based on these devices.

The LC58E68 features an additional 224 bytes of EPROM containing the configuration option data. Configuration options include input and output configurations and oscillator selection. Input configuration options are LOW-level hold transistor, HIGH-level hold transistor and no hold transistor enabled, and pull-up and pull-down input transistors. Output configuration options are LCD driver and CMOS, p-channel opendrain and n-channel open-drain general-purpose outputs. The oscillator options are ceramic filter, crystal, and both ceramic filter and crystal.

The LC58E68's UV-erasable EPROM can be reprogrammed using a general-purpose PROM programmer and an adapter board.

The LC58E68 operates from a 3 or 5 V supply and is available in 80-pin QIPs.

#### Features

- Compatible with the LC586X series mask ROM devices
- 16-Kbyte program EPROM
- 224-byte configuration EPROM
- 1-Kbit RAM
- LCD drivers
- 3 or 5 V supply
- 80-pin QIP

#### Pin Assignment



#### Package Dimensions

Unit: mm

3152A-QFC80C



#### SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

11795TH (ID)/7142JN No. 3410-1/19

Block Diagram



LC58E68

No. 3410-2/19

# **Pin Functions**

.

| Number | Name    | Function                                                                                    |  |  |  |  |
|--------|---------|---------------------------------------------------------------------------------------------|--|--|--|--|
| 1      | COM2    |                                                                                             |  |  |  |  |
| 2      | COM1    |                                                                                             |  |  |  |  |
| 3      | CUP1    |                                                                                             |  |  |  |  |
| 4      | CUP2    | LOD drive bias circle capacitor connections                                                 |  |  |  |  |
| 5      | RES     | Active-HIGH reset input                                                                     |  |  |  |  |
| 6      | INT/OE  | Multiplexed interrupt request (INT) and EPROM output enable (OE) input                      |  |  |  |  |
| 7      | SO1/A08 |                                                                                             |  |  |  |  |
| 8      | SO2/A09 | Multiplexed 4-bit input/output port SO (SO1 to SO4), serial port (SO1 to SO3) and EPROM     |  |  |  |  |
| 9      | SO3/A10 | address inputs (A08 to A11)                                                                 |  |  |  |  |
| 10     | SO4/A11 |                                                                                             |  |  |  |  |
| 11     | A1/A12  |                                                                                             |  |  |  |  |
| 12     | A2/A13  | Multiplexed 4-bit inpu/output port A (A1 to A4), EPROM address inputs (A12 to A14) and chip |  |  |  |  |
| 13     | A3/A14  | enable input (CE)                                                                           |  |  |  |  |
| 14     | A4/CE   |                                                                                             |  |  |  |  |
| 15     | P1/D4   |                                                                                             |  |  |  |  |
| 16     | P2/D5   | Multiplexed 4-bit input/output port P (P1 to P4) and EPROM data bus lines (D4 to D7)        |  |  |  |  |
| 17     | P3/D6   |                                                                                             |  |  |  |  |
| 18     | P4/D7   |                                                                                             |  |  |  |  |
| 19     | χτουτ   | Crustal essillator expressions                                                              |  |  |  |  |
| 20     | XTIN    | Crystal Oscillator Contections                                                              |  |  |  |  |
| . 21   | VDD2    |                                                                                             |  |  |  |  |
| 22     | VDD1    |                                                                                             |  |  |  |  |
| 23     | VSS     | Ground                                                                                      |  |  |  |  |
| 24     | VDD     | Voltage supply                                                                              |  |  |  |  |
| 25     | CFIN    | Coramia filler oscillator connections                                                       |  |  |  |  |
| 26     | CFOUT   |                                                                                             |  |  |  |  |
| 27     | S1/A00  |                                                                                             |  |  |  |  |
| 28     | S2/A01  | Multiplexed 4-bit input pert 5 (St. to S4) and EPPON address inputs (400 to 403)            |  |  |  |  |
| 29     | S3/A02  | איטוויגאפאפא אייטוג ווואטו אטוי ס נסי נט סאין מוע ברתטוא מעוופגע גוווטענג (אטט נס אטס)      |  |  |  |  |
| 30     | S4/A03  |                                                                                             |  |  |  |  |
| 31     | K1/D0   |                                                                                             |  |  |  |  |
| 32     | K2/D1   | Multiplayed 4 bit input/output pert K (K1 to K4) and EDDOM data has free (Fo. to Do)        |  |  |  |  |
| 33     | K3/D2   | Involupiexed 4-bit inpolocitiput portin (ni to n4) and EPMOM data bus lines (DO to D3)      |  |  |  |  |
| 34     | K4/D3   |                                                                                             |  |  |  |  |

No. 3410---3/19

— ·

۲

| Number   | Name          | Function                                                                                      |  |  |  |
|----------|---------------|-----------------------------------------------------------------------------------------------|--|--|--|
| 35       | M1/A04        |                                                                                               |  |  |  |
| 36       | M2/A05        | Multiplexed 4-bit input/output port M (M1 to M4), EPROM address inputs (A04 to A07) and timer |  |  |  |
| 37       | M3/A06        | 1 and 2 external clock inputs (M3 and M4)                                                     |  |  |  |
| 38       | M4/A07        |                                                                                               |  |  |  |
| 39       | N1            |                                                                                               |  |  |  |
| 40       | N2            |                                                                                               |  |  |  |
| 41       | N3            | - Multiplexed 4-bit, open-drain output port N (N1 to N4) and alarm signal output (N4)         |  |  |  |
| 42       | N4            |                                                                                               |  |  |  |
| 43       | TST/VPP       | Multiplexed test input (TST) and EPROM VPP supply (VPP)                                       |  |  |  |
| 44 lo 78 | SEG1 to SEG35 | LCD segment drivers or general-purpose outputs                                                |  |  |  |
| 79       | COM4          |                                                                                               |  |  |  |
| 80       | COM3          | LCD common outputs                                                                            |  |  |  |

# Specifications

# Absolute Maximum Ratings

| Parameter                                                                                  | Symbol              | Ratings                        | Unit |
|--------------------------------------------------------------------------------------------|---------------------|--------------------------------|------|
| Supply voltage range                                                                       | V <sub>DD</sub> max | 0.3 to +6.0                    | v    |
| LCD supply voltage 1 range                                                                 | VDD1                | -0.3 to V <sub>DD</sub>        | v    |
| LCD supply voltage 2 range                                                                 | V <sub>DD2</sub>    | -0.3 to V <sub>DD</sub>        | V    |
| XTIN and CFIN input voltage range                                                          | Vn                  | 0 to maximum generated voltage | v    |
| Ports S, K, P, SO and A, and RES, INT and TST input voltage range                          | V <sub>12</sub>     | -0.3 to V <sub>DD</sub> + 0.3  | v    |
| XTOUT and CFOUT output voltage range                                                       | · Vo1               | 0 to maximum generated voltage | v    |
| Ports X, P, SO and A, and CUP1, CUP2, SEG1 to SEG 35 and COM1 to COM4 output voltage range | V <sub>O2</sub>     | -0.3 to V <sub>DD</sub> + 0.3  | v    |
| Port N open-drain output voltage range                                                     | V <sub>O3</sub>     | -0.3 10 +13                    | v    |
| Port N output current range                                                                | loi                 | -10 to +15                     | mA   |
| Ports K, P, M, SO and A output current range                                               | 1 <sub>02</sub>     | 5 to +5                        | mA   |
| Ports K, P, M, SO, A and N, and SEG1 to SEG 35 total output current range                  | Σίο                 | -70 to 70                      | mA   |
| Power dissipation                                                                          | Po                  | 500                            | mW   |
| Operating temperature range                                                                | Topr                | 10 to 40                       | °C   |
| Storage temperature range                                                                  | T <sub>stg</sub>    | -55 to +125                    | °C   |

No. 3410-4/19

# Allowable Operating Ranges

T<sub>•</sub> = 25 °C

| Parameter                                           | Symbol          | Ratings                | Unit |
|-----------------------------------------------------|-----------------|------------------------|------|
| Supply voltage range with LCD disabled. See note 1. | V <sub>DD</sub> | 2.8 to 5.5             | v    |
| Supply voltage range with static bias. See note 1.  | V <sub>DD</sub> | 2.8 to 5.5             | V    |
| Supply voltage range with 1/2-bias. See note 2.     | V <sub>DD</sub> | 2.8 to 5.5             | V    |
| Supply voltage range with 1/3-bias. See note 3.     | V <sub>DD</sub> | 2.8 to 5.5             | V    |
| Minimum data retention voltage. See note 4.         | V <sub>DR</sub> | 2.8 to V <sub>DD</sub> | v    |

## Notes

1.  $V_{DD1} = V_{DD2} = V_{DD}$ 2.  $V_{DD1} = V_{DD2} \approx \frac{1}{2} \times V_{DD}$ 3.  $V_{DD1} \approx \frac{1}{3} \times V_{DD}$ ,  $V_{DD2} \approx \frac{1}{3} \times V_{DD}$ 

4. Oscillator and all internal circuits halted

## **Electrical Characteristics**

 $V_{DD} = 2.8$  to 3.2 V

 $T_{s} = 25 \ ^{\circ}C$ 

|                      | eter Symbol Conditions |                                                                                                                                                                |     | 11-14 |     |      |
|----------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|------|
| . Parameter          | Symbol                 | Conditions                                                                                                                                                     | min | typ   | max | Unit |
|                      |                        | V <sub>DD</sub> = 3 V,<br>C1 = C2 = 0.1 μF,<br>V <sub>2</sub> -bias,<br>f <sub>xtal</sub> = 32.768 kHz.<br>See figure 2.                                       | -   | 1.5   | -   |      |
| LCD supply voltage   | VDD1                   | V <sub>DD</sub> = 3 V,<br>C1 = C2 = 0.1 μF,<br>¼s-bias,<br>f <sub>xtal</sub> = 32.768 kHz.<br>See figure 3.                                                    | -   | 1.0   | -   | V    |
| LCD supply voltage 2 | V <sub>DD2</sub>       | V <sub>DD</sub> = 3 V,<br>C1 = C2 = 0.1 μF,<br>Vs-bias,<br>I <sub>xtel</sub> = 32.768 kHz.<br>See figure 3.                                                    | -   | 2.0   | -   | v    |
|                      |                        |                                                                                                                                                                | -   | 5     | -   |      |
| Supply current       | - 100                  | $V_{DD} = 3 V,$<br>$i_{xtal} = 38 \text{ or } 65 \text{ kHz},$<br>$C_g = 10 \text{ pF},$<br>$Z_c = 25 \text{ k}\Omega,$<br>halt mode, ½-bias.<br>See figure 4. | -   | 10    | -   | μА   |
|                      |                        |                                                                                                                                                                | _   | 150   | -   |      |

| See figure 5. | hait mode.    |  | 1 |
|---------------|---------------|--|---|
|               | See figure 5. |  |   |

No. 3410---5/19

\*

.

| Democia                                                         | Ormhal              | Con                                                     | litions        | Ratings                            |                       |                     | Finit |  |
|-----------------------------------------------------------------|---------------------|---------------------------------------------------------|----------------|------------------------------------|-----------------------|---------------------|-------|--|
| Parameter                                                       | Бутрон              | Conc                                                    | Intons         | min                                | typ                   | max                 | Unit  |  |
| Supply current                                                  | loo .               |                                                         | 100 pF,        | _                                  | 200                   | _                   | μА    |  |
| Supply leakage current                                          | loo                 | V <sub>DD</sub> = 3 V,<br>standby mode<br>See figure 1. |                | _                                  | 1                     | -                   | μA    |  |
| Ports S, K, P, M, SO and A, and<br>INT LOW-level input voltage  | VIL1                |                                                         |                | 0                                  | F                     | 0.3V <sub>DD</sub>  | v     |  |
| Ports S, K, P, M, SO and A, and<br>INT HIGH-level input voltage | ViH1                |                                                         |                | 0.7V <sub>DD</sub>                 | -                     | V <sub>DD</sub>     | v     |  |
| RES and CFIN LOW-level input voltage                            | V <sub>IL2</sub>    |                                                         |                | o                                  | -                     | 0.25V <sub>DD</sub> | v     |  |
| RES and CFIN HIGH-level input voltage                           | V <sub>IH2</sub>    |                                                         |                | 0.75V <sub>DD</sub>                | -                     |                     | v     |  |
| Ports K, P, M, SO and A<br>LOW-level output vollage             | V <sub>OL2</sub>    | loι = 400 μA                                            |                | -                                  | 0.2                   | 0.5                 | v     |  |
| Ports K, P, M, SO and A<br>HIGH-level output voltage            | Vohi                | l <sub>он</sub> = -400 р                                | Ъ              | V <sub>DD</sub> - 0.5              | V <sub>DD</sub> - 0.2 | -                   | v     |  |
| Ports S, K, M, SO and A, and<br>INT input leakage current       | lieakt              | V <sub>DD</sub> = 3 V                                   | $V_1 = V_{SS}$ | _1                                 | _                     |                     | μΑ    |  |
| Port N LOW-level output voltage                                 | Vol1                | l <sub>ól</sub> = 10 mA                                 | 11 - 100       | _                                  |                       | 0.5                 | v     |  |
| Port N output leakage current                                   | lieak2              | V <sub>OH</sub> = 10.5 \                                | /              | . –                                |                       | 1                   | μΑ    |  |
| SEG1 to SEG35 CMOS LOW-level output voltage                     | Vol3                | l <sub>oL</sub> = 100 μA                                |                | _                                  | _                     | 0.5                 | v     |  |
| SEG1 to SEG35 CMOS HIGH-level output voltage                    | V <sub>DH2</sub>    | I <sub>OH</sub> =100 ,                                  | JA.            | V <sub>DO</sub> - 0.5              | -                     | -                   | v     |  |
| SEG1 to SEG35 p-channel<br>HIGH-level output voltage            | Vонз                | Іон ≖100 µ                                              | AL             | V <sub>DD</sub> - 0.5              | _                     | -                   | v     |  |
| SEG1 to SEG35 p-channel output leakage current                  | lieak3              | V <sub>OL</sub> = 0 V                                   |                | _                                  | _                     | 1                   | μА    |  |
| SEG1 to SEG35 n-channel<br>LOW-level output voltage             | V <sub>OL4</sub>    | l <sub>oL</sub> = 100 μ/                                | 4              |                                    | -                     | 0.5                 | v     |  |
| SEG1 to SEG35 n-channel output<br>leakage current               | l <sub>leak</sub> 4 | $V_{OH} = V_{DD}$                                       |                | -                                  | -                     | 1                   | μA    |  |
| Static-bias SEG1 to SEG35<br>LOW-level output voltage           | Vols                | l <sub>oL</sub> = 20 μΑ                                 |                |                                    | -                     | 0.2                 | v     |  |
| Static-bias SEG1 to SEG35<br>HIGH-level output voltage          | V <sub>OH4</sub>    | I <sub>он</sub> =20 µ.                                  | A              | V <sub>DD</sub> - 0.2              | -                     | -                   | v     |  |
| Static-bias COM1 LOW-level output voltage                       | Vole                | lo <sub>L</sub> = 100 µ/                                | 4              | -                                  |                       | 0.2                 | V.    |  |
| Static-bias COM1 HIGH-level output voltage                      | V <sub>OH5</sub>    | l <sub>OH</sub> = -100 j                                | щA             | <sup>·</sup> V <sub>DD</sub> - 0.2 | _                     | -                   | v     |  |
| 1/2-bias SEG1 to SEG35 LOW-level output voltage                 | VOL7                | loL = 20 μA                                             |                | -                                  | _                     | 0.2                 | v     |  |
| V2-bias SEG1 to SEG35 HIGH-level output voltage                 | V <sub>OH6</sub>    | I <sub>он</sub> =20 µ                                   | A              | V <sub>DD</sub> - 0.2              | -                     | -                   | v     |  |

.

No. 3410—6/19

|                                                                              | <u> </u>         | Conditions                                               | Ratings                         |      | Ratings                         |      |
|------------------------------------------------------------------------------|------------------|----------------------------------------------------------|---------------------------------|------|---------------------------------|------|
| Parameter                                                                    | Symbol           | Conditions                                               | mln                             | typ  | max                             | Unit |
| Y2-bias COM1 to COM4 LOW-level<br>output voltage                             | Volb             | l <sub>oL</sub> = 100 μA                                 | -                               | -    | 0.2                             | v    |
| V2-bias COM1 to COM4 MID-level<br>output voltage                             | V <sub>OM1</sub> | l <sub>oL</sub> = 100 μA or<br>l <sub>OH</sub> =100 μA   | (V <sub>DD</sub> ÷ 2)<br>- 0.2  | -    | (V <sub>DD</sub> + 2)<br>+ 0.2  | v    |
| V2-bias COM1 to COM4 HIGH-tevel<br>output voltage                            | V <sub>OH7</sub> | l <sub>oH</sub> =100 μA                                  | V <sub>DD</sub> - 0.2           | -    | -                               | V    |
| /s-bias SEG1 to SEG35 LOW-level<br>butput voltage                            | Vols             | l <sub>ol</sub> = 20 μA                                  | -                               | _    | 0.2                             | ν    |
| Vy-bias SEG1 to SEG35 MID-level                                              | Vara             | l <sub>oL</sub> = 20 µA or<br>l <sub>oH</sub> = −20 µA   | (V <sub>DD</sub> + 3)<br>- 0.2  | _    | (V <sub>DD</sub> + 3)<br>+ 0.2  | v    |
| output voltage                                                               | VOM2             | I <sub>OL</sub> = 20 µA or<br>I <sub>OH</sub> = -20 µA   | (2V <sub>DD</sub> + 3)<br>- 0.2 | _    | (2V <sub>DD</sub> + 3)<br>+ 0.2 | v    |
| Vs-bias SEG1 to SEG35 HIGH-level<br>output voltage                           | Vонв             | юн =20 шА                                                | V <sub>DD</sub> - 0.2           | _    | -                               | v    |
| Vs-bias COM1 to COM4 LOW-level<br>output voltage                             | Vol10            | l <sub>OL</sub> = 100 μA                                 | -                               | _    | 0.2                             | v    |
| /3-bias COM1 to COM4 MID-level                                               |                  | loL = 100 µA or<br>loн = -100 µA                         | (V <sub>DD</sub> + 3)<br>- 0.2  | _    | (V <sub>DD</sub> + 3)<br>+ 0.2  | ٧    |
| output voltage                                                               | Vom3             | l <sub>OL</sub> = 100 μA or<br>l <sub>OH</sub> = -100 μA | (2V <sub>DD</sub> + 3)<br>- 0.2 | -    | (2V <sub>DD</sub> + 3)<br>+ 0.2 | V    |
| Vs-bias COM1 to COM4 HIGH-level<br>output vollage                            | V <sub>онэ</sub> | I <sub>OH</sub> =100 µА                                  | V <sub>DD</sub> - 0.2           | -    | _                               | v    |
| Ports S, K, P, M, SO and A<br>LOW-level hold transistor input<br>resistance  | R <sub>iL1</sub> | $V_{I} = 0.2V_{DD}$                                      | 60                              | 300  | 1200                            | kΩ   |
| Ports S, K, P, M, SO and A<br>HIGH-level hold transistor input<br>resistance | R <sub>IH1</sub> | $V_1 = 0.8V_{DD}$                                        | 60                              | 300  | 1200                            | kΩ   |
| Ports S, K, P, M, SO and A pull-up transistor input resistance               | Rput             | Vi = Vss                                                 | 30                              | 150  | 500                             | kΩ   |
| Ports S, K, P, M, SO and A pull-down transistor input resistance             | R <sub>PD1</sub> | VI = VDD                                                 | 30                              | 150  | 500                             | kΩ   |
| INT LOW-level hold transistor input resistance                               | Rill2            | $V_{I} = 0.2V_{DD}$                                      | 60                              | 300  | . 1200                          | kΩ   |
| INT HIGH-level hold transistor input resistance                              | RiH2             | $V_{I} = 0.8V_{DD}$                                      | 60                              | 300  | 1200                            | kΩ   |
| INT pull-up transistor resistance                                            | R <sub>PU2</sub> | $V_1 = V_{SS}$                                           | 300                             | 1500 | 5000                            | kΩ   |
| INT pull-down transistor resistance                                          | R <sub>PD2</sub> | $V_1 = V_{DD}$                                           | 300                             | 1500 | 5000                            | kΩ   |
| TST pull-down transistor resistance                                          | R <sub>PD3</sub> | $V_{I} = V_{DD}$                                         | 20                              | 70   | 300                             | kΩ   |
| XTOUT oscillation compensating<br>capacitance                                | Cd               | $V_{DD} = 3 V$                                           | -                               | 20   | _                               | pF   |
|                                                                              |                  | 32 kHz range                                             | 32                              | -    | 33                              |      |
| Crystal oscillator operating frequency                                       | fxtai            | 38 kHz range                                             | 37                              | -    | 39                              | kHz  |
|                                                                              |                  | 65 kHz range                                             | 60                              | -    | 70                              |      |
| Ceramic filter oscillator operating frequency                                | lcer             |                                                          | 190                             | _    | 1200                            | kHz  |
| Serial interface clock frequency                                             | lser             | Rise/fall time ≤ 10 µs                                   | 0                               | _    | 200                             | kHz  |

No. 3410-7/19

# $V_{DD} = 4.5$ to 5.5 V

 $T_{\mu} = 25$  °C

| Parameter                                                      | Symbol           | Conditions                                                                                                                                                                                                | Ratings |      | Conditions         | Conditions | Unit |
|----------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------------------|------------|------|
| · ····································                         |                  |                                                                                                                                                                                                           | min     | typ  | max                |            |      |
| I CD, such usliges 1                                           |                  |                                                                                                                                                                                                           | _       | 2.5  | -                  | M          |      |
| LCD supply voltage i                                           | VDD1             | V <sub>DD</sub> = 5 V,<br>C1 = C2 = 0.1 μF,<br>¼s-bias,<br>f <sub>xtel</sub> = 32.768 kHz.<br>See figure 3.                                                                                               | -       | 1.67 | -                  | v          |      |
| LCD supply voltage 2                                           | V <sub>DO2</sub> | V <sub>DD</sub> = 5 V,<br>C1 = C2 = 0.1 μF,<br>V <sub>3</sub> -bias,<br>I <sub>xtel</sub> = 32.768 kHz.<br>See figure 3.                                                                                  | -       | 3.33 | -                  | v          |      |
|                                                                |                  | $\begin{array}{l} V_{DD} = 5 \ V, \\ I_{xtal} = 32 \ kHz, \\ C_g = 20 \ pF, \\ Z_c = 25 \ k\Omega, \\ halt mode, \ /s-bias. \\ See figure 4. \end{array}$                                                 | _       | 20   |                    |            |      |
|                                                                | loo              | $\begin{array}{l} V_{DD} = 5 \ V, \\ f_{xbal} = 38 \ {\rm or} \ 65 \ kHz, \\ C_g = 10 \ {\rm pF}, \\ Z_c = 25 \ k\Omega, \\ hall \ {\rm mode}, \ Y_3\ {\rm bias}. \\ {\rm See} \ figure \ 4. \end{array}$ | _       | 30   | _                  |            |      |
| Supply current                                                 |                  | $\begin{array}{l} V_{DD} = 5 \ V, \\ f_{car} = 400 \ \text{KHz}, \\ C_{cg} = C_{cd} = 330 \ \text{pF}, \\ halt \ \text{mode}. \\ See \ figure \ 5. \end{array}$                                           | -       | 400  | _                  | μА         |      |
|                                                                |                  | $ \begin{array}{l} V_{DD} = 5 \ V, \\ f_{cer} = 1 \ MHz, \\ C_{cg} = C_{cd} = 100 \ pF, \\ hall \ mode. \\ See \ figure \ 6. \end{array} $                                                                | -       | 450  |                    |            |      |
|                                                                |                  |                                                                                                                                                                                                           | -       | 500  | -                  |            |      |
|                                                                |                  |                                                                                                                                                                                                           | -       | 700  | _                  |            |      |
| Supply leakage current                                         | ίοο              | V <sub>DD</sub> = 5.5 V,<br>standby mode.<br>See figure 1.                                                                                                                                                | -       | 1    | -                  | μA         |      |
| Ports S, K, P, M, SO and A, and<br>INT LOW-level input voltage | VILI             |                                                                                                                                                                                                           | 0       | -    | 0.3V <sub>DD</sub> | v          |      |

No. 3410-8/19

| <b>-</b>                                                        | Ratings Ratings    |                                                    |                                |                       |                                |      |
|-----------------------------------------------------------------|--------------------|----------------------------------------------------|--------------------------------|-----------------------|--------------------------------|------|
| Parameter                                                       | Symbol             | Conditions                                         | min                            | typ                   | max                            | Unit |
| Ports S, K, P, M, SO and A, and<br>INT HIGH-level input voltage | ViH1               |                                                    | 0.7V <sub>DD</sub>             | -                     | VDD                            | ۷    |
| RES and CFIN LOW-level input voltage                            | V <sub>IL2</sub>   |                                                    | 0                              | -                     | 0.25V <sub>DD</sub>            | V    |
| RES and CFIN HIGH-level input voltage                           | V <sub>IH2</sub>   |                                                    | 0.75V <sub>DD</sub>            | -                     | V <sub>DD</sub>                | V    |
| Ports K, P, M, SO and A<br>LOW-level output voltage             | V <sub>OL2</sub>   | l <sub>OL</sub> = 2 mA                             | -                              | 0.2                   | 0.5                            | V    |
| Ports K, P, M, SO and A<br>HIGH-level output voltage            | V <sub>OH1</sub>   | lон = -1 mA                                        | V <sub>DD</sub> - 0.5          | V <sub>DD</sub> - 0.2 | -                              | ۷    |
| Ports S, K, M, SO and A, and<br>INT input leakage current       | leakt              | $V_{DD} = 5.5 V \frac{V_I = V_{SS}}{V_I = V_{SS}}$ | -1                             | _                     | -                              | μА   |
|                                                                 |                    | $v_i = v_{DD}$                                     | -                              |                       | 1                              |      |
| Port N LOW-level output voltage                                 | VoL1               |                                                    | -                              |                       | 0.5                            |      |
| Port N output leakage current                                   | lieak2             | V <sub>OH</sub> = 10.5 V                           |                                | -                     | 1                              | μΑ   |
| SEG1 to SEG35 CMOS LOW-level<br>output voltage                  | V <sub>OL3</sub>   | lo <sub>L</sub> = 250 μA                           | -                              | -                     | 0.5                            | V    |
| SEG1 to SEG35 CMOS HIGH-level<br>output voltage                 | V <sub>OH2</sub>   | lон = ⊷250 µА                                      | V <sub>DD</sub> - 0.5          | -                     | -                              | v    |
| SEG1 to SEG35 p-channel<br>HIGH-level output voltage            | Vонз               | l <sub>он</sub> =250 µА                            | V <sub>DD</sub> - 0.5          | -                     | _                              | v    |
| SEG1 to SEG35 p-channel output<br>leakage current               | lioak3             | V <sub>OL</sub> = 0 V                              | -                              | _                     | 1                              | μΑ   |
| SEG1 to SEG35 n-channel<br>LOW-level output voltage             | V <sub>OL4</sub>   | i <sub>oL</sub> = 250 μA                           | -                              | -                     | 0.5                            | v    |
| SEG1 to SEG35 n-channel output<br>leakage current               | <sup>1</sup> leak4 | V <sub>OH</sub> = V <sub>DD</sub>                  | -                              | -                     | 1                              | μΑ   |
| Static-bias SEG1 to SEG35<br>LOW-level output voltage           | V <sub>OL5</sub>   | l <sub>oL</sub> = 20 μΑ                            | _                              | -                     | 0.2                            | v    |
| Static-bias SEG1 to SEG35<br>HIGH-level output voltage          | V <sub>OH4</sub>   | Іон = −20 µА                                       | V <sub>DD</sub> - 0.2          | -                     |                                | v    |
| Static-bias COM1 LOW-level output voltage                       | Vole               | l <sub>OL</sub> = 200 μA                           | -                              | -                     | 0.2                            | v    |
| Static-bias COM1 HIGH-level output voltage                      | V <sub>OH5</sub>   | l <sub>OH</sub> = -200 μA                          | V <sub>0D</sub> - 0.2          | -                     |                                | v    |
| V⊱bias SEG1 to SEG35 LOW-level output voltage                   | V <sub>OL7</sub>   | l <sub>oL</sub> = 20 μA                            | -                              | -                     | 0.2                            | v    |
| V⊱bias SEG1 to SEG35<br>HIGH-level output voltage               | Vоне               | l <sub>0н</sub> =20 µА                             | V <sub>DD</sub> - 0.2          | _                     | -                              | v    |
| 1/2-bias COM1 to COM4 LOW-level<br>output voltage               | Volb               | l <sub>OL</sub> = 200 μΑ                           | -                              |                       | 0.2                            | v    |
| V2-bias COM1 to COM4 MID-level output voltage                   | Vowi               | lot = 200 μA or<br>loh = -200 μA                   | (V <sub>DD</sub> + 2)<br>- 0.2 | -                     | (V <sub>DD</sub> + 2)<br>+ 0,2 | v    |
| V2-bias COM1 to COM4 HIGH-level                                 | V <sub>OH7</sub>   | loн = -200 µА                                      | V <sub>D0</sub> - 0.2          | _                     | _                              | v    |

| anihar rounda | <b>;</b> |  | , |  |
|---------------|----------|--|---|--|
|               |          |  | • |  |

No. 3410-9/19

|                                                                              |                   |                                                          | Ratings                         |     |                                 |      |
|------------------------------------------------------------------------------|-------------------|----------------------------------------------------------|---------------------------------|-----|---------------------------------|------|
| Parameter                                                                    | Symbol            | Conditions                                               | min                             | typ | max                             | Unit |
| Vs-bias SEG1 to SEG35 LOW-level<br>output voltage                            | Vole              | I <sub>OL</sub> = 20 μA                                  | -                               | -   | 0.2                             | v    |
| V₃-bias SEG1 to SEG35 MID-level                                              |                   | l <sub>OL</sub> = 20 μA or<br>l <sub>OH</sub> = -20 μA   | (V <sub>D0</sub> + 3)<br>- 0.2  | -   | (V <sub>DD</sub> + 3)<br>+ 0.2  | v    |
| output voltage                                                               | ¥OM2              | l <sub>OL</sub> = 20 μA or<br>l <sub>OH</sub> = -20 μA   | (2V <sub>D0</sub> + 3)<br>- 0.2 | -   | (2V <sub>DD</sub> + 3)<br>+ 0.2 | ν    |
| Vs-bias SEG1 to SEG35<br>HIGH-level output voltage                           | V <sub>OH8</sub>  | l <sub>oh</sub> = -20 μA                                 | V <sub>DD</sub> - 0.2           | -   | -                               | v    |
| Vs-bias COM1 to COM4 LOW-level output voltage                                | Volia             | l <sub>DL</sub> = 200 μΑ                                 | -                               | -   | 0.2                             | V    |
| Vs-bias COM1 to COM4 M1D-level                                               | Ven               | l <sub>OL</sub> = 200 μA or<br>l <sub>OH</sub> = -200 μA | (V <sub>DD</sub> + 3)<br>- 0.2  | _   | (V <sub>DD</sub> + 3)<br>+ 0.2  | ۷    |
| output voltage                                                               | VOM3              | l <sub>OL</sub> = 200 µA or<br>l <sub>OH</sub> =200 µA   | (2V <sub>C0</sub> + 3)<br>- 0.2 | -   | (2V <sub>DD</sub> + 3)<br>+ 0.2 | v    |
| Vs-bias COM1 to COM4 HIGH-level output voltage                               | Vоня              | юн = -200 μА                                             | V <sub>DD</sub> - 0.2           | _   | -                               | v    |
| Ports S, K, P, M, SO and A<br>LOW-level hold transistor input<br>resistance  | R <sub>IL1</sub>  | $V_{I} = 0.2V_{DD}$                                      | 30                              | 120 | 500                             | kΩ   |
| Ports S, K, P, M, SO and A<br>HIGH-level hold transistor input<br>resistance | RiH1              | $V_{I} = 0.8 V_{DD}$                                     | 30                              | 120 | 500                             | kΩ   |
| Ports S, K, P, M, SO and A pull-up transistor input resistance               | Reut              | VI = VSS                                                 | 10                              | 50  | 200                             | kΩ   |
| Ports S, K, P, M, SO and A pull-down transistor input resistance             | R <sub>PD1</sub>  | $V_1 = V_{DD}$                                           | 10                              | 50  | 200                             | kΩ   |
| INT LOW-level hold transistor input resistance                               | R <sub>IL2</sub>  | $V_1 = 0.2V_{DD}$                                        | 30                              | 120 | 500                             | kΩ   |
| INT HIGH-level hold transistor<br>input resistance                           | R <sub>iH2</sub>  | $V_{I} = 0.8 V_{DD}$                                     | 30                              | 120 | 500                             | kΩ   |
| INT pull-up transistor resistance                                            | R <sub>PU2</sub>  | $V_{I} = V_{SS}$                                         | 100                             | 500 | 2000                            | kΩ   |
| INT pull-down transistor resistance                                          | R <sub>PD2</sub>  | $V_i = V_{DD}$                                           | 100                             | 500 | 2000                            | kΩ   |
| TST pull-down transistor resistance                                          | R <sub>PD3</sub>  | $V_i = V_{DD}$                                           | 20                              | 70  | 300                             | kΩ   |
| XTOUT oscillation compensating<br>capacitance                                | Cd                | $V_{DD} = 5 V$                                           | -                               | 20  | -                               | pF   |
|                                                                              |                   | 32 kHz range                                             | 32                              | -   | 33                              |      |
| Crystal oscillator operating<br>frequency                                    | f <sub>xtal</sub> | 38 kHz range                                             | 37                              | -   | 39                              | kHz  |
|                                                                              |                   | 65 kHz range                                             | 60                              |     | 70                              |      |
| Ceramic filter oscillator operating frequency                                | foor -            |                                                          | 190                             | -   | 1200                            | kHz  |
| Serial interface clock frequency                                             | fser              | Rise/fall time ≤ 10 µs                                   | 0                               | -   | 200                             | kHz  |

No. 3410—10/19

#### **Measurement Circuits**

The following conditions apply to figure 1.

- Standby mode
- Port S input resistors enabled
- I/O ports in output mode, all outputs HIGH
- INT open and internal input transistors enabled
- External pull-down resistor connected to RES.
- Current flow through components connected to LCD ports is not included.
- $f_{xtal} = 32$  to 65 kHz
- $f_{cer} = 200$  kHz to 4 MHz

The following conditions apply to figures 2 and 3.

- $f_{xtal} = 32 \text{ kHz}$
- $C1 = C2 = C3 = 0.1 \ \mu F$
- LCD ports are open.
- $f_{cer} = 200 \text{ kHz to } 4 \text{ MHz}$



Figure 4. Supply current measurement 1

#### Notes

1. Ceramic filter oscillator stopped

CUP2

2.  $f_{xial} = 32$ , 38 or 65 kHz



Figure 1. Supply leakage measurement



Figure 2. Output voltage measurement 1



Figure 3. Output voltage measurement 2



XTi

VDD

Crysta

Figure 5. Supply current measurement 2



Figure 6. Supply current measurement 3

## Note

Crystal oscillator stopped

No. 3410-11/19

.

. ....

# **Pin Functions**

| Name    |                                     | Function                                                                                                                                     |                           |                   |                     |                            |  |  |  |
|---------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|---------------------|----------------------------|--|--|--|
| COM1    | COM1 to COM4<br>frequency for eac   | COM1 to COM4 function as LCD common driver outputs. The active outputs and frame frequency for each duty cycle are shown in the table below. |                           |                   |                     |                            |  |  |  |
| COM2    | Duty cycle                          | COMI                                                                                                                                         | COM2                      | COM3              | COM4                | Frame<br>frequency<br>(Hz) |  |  |  |
|         | Static                              | 1                                                                                                                                            | -                         | _                 | -                   | 32                         |  |  |  |
|         | y <sub>2</sub>                      | 1                                                                                                                                            | 1                         | _                 | _                   | 32                         |  |  |  |
| COM3    | 1/3                                 | 1                                                                                                                                            | 1                         | 1                 | -                   | 42.7                       |  |  |  |
| ·····   |                                     | 1                                                                                                                                            | 1                         | 1                 | 1                   | 32                         |  |  |  |
| COM4    | Note<br>φ <sub>0</sub> = 32.768 kHz | Note<br>φ <sub>0</sub> = 32.768 kHz                                                                                                          |                           |                   |                     |                            |  |  |  |
| CUP1    | CUP1 and CUP2                       | CUP1 and CUP2 are part of the I CD-drive vollage divider circuit. When using V- or V-bias                                                    |                           |                   |                     |                            |  |  |  |
| CUP2    | connect a bipolar                   | capacitor betw                                                                                                                               | een these pins,           | otherwise leave   | them open.          |                            |  |  |  |
| RES     | RES pulsewidths resistor.           | RES pulsewidths greater than 200 $\mu s$ reset the microprocessor. RES requires an external input resistor.                                  |                           |                   |                     |                            |  |  |  |
| INT/OE  | INT functions as                    | the output ena                                                                                                                               | ble input when t          | he EPROM is a     | ddressed.           |                            |  |  |  |
| SO1/A08 |                                     |                                                                                                                                              |                           |                   |                     |                            |  |  |  |
| SO2/A09 | Port SO functions                   | s as address b                                                                                                                               | us inputs when t          | he EPROM is a     | ddressed. SO1       | also functions as          |  |  |  |
| SO3/A10 | output. Clock dire                  | ection and polar                                                                                                                             | ity are determine         | d by software.    |                     | a clock input of           |  |  |  |
| SO4/A11 |                                     |                                                                                                                                              |                           |                   |                     |                            |  |  |  |
| A1/A12  |                                     |                                                                                                                                              |                           |                   |                     |                            |  |  |  |
| A2/A13  | Port A functions                    | as address bus                                                                                                                               | s inputs and the          | chip enable inp   | ut when the EF      | PROM is                    |  |  |  |
| A3/A14  | addressed.                          |                                                                                                                                              |                           |                   |                     |                            |  |  |  |
| A4/CE   |                                     |                                                                                                                                              |                           |                   |                     |                            |  |  |  |
| P1/D4   |                                     |                                                                                                                                              |                           |                   |                     |                            |  |  |  |
| P2/D5   | Port P functions                    | ae data bue lir                                                                                                                              | ne when the EC            | DOM is address    | ad a                |                            |  |  |  |
| P3/D6   |                                     | 23 444 545 11                                                                                                                                |                           |                   | 10 <b>0</b> .       |                            |  |  |  |
| P4/D7   |                                     |                                                                                                                                              |                           |                   |                     |                            |  |  |  |
| XTIN    | XTIN and XTOU                       | T function as th                                                                                                                             | ne crystal oscillat       | or connections,   | otherwise they a    | are left open.             |  |  |  |
| Χτουτ   | The crystal frequ                   | ency is a confi                                                                                                                              | guration option.          | The oscillator ha | ts after a HOL      | D instruction.             |  |  |  |
|         | VDD1 and VDD2<br>connect these pir  | VDD1 and VDD2 function as LCD drive bias circuit capacitor connections. For each bias drive, connect these pins as shown below.              |                           |                   |                     |                            |  |  |  |
| VDD1    | Static                              | blas                                                                                                                                         | ·/2-                      | blas              | 1/3                 | -blas                      |  |  |  |
|         |                                     | ······································                                                                                                       |                           |                   |                     |                            |  |  |  |
| VDD2    | VDD1 D<br>VDD2 D<br>VSS D           | ]<br>                                                                                                                                        | VDD1 -<br>VDD2 -<br>VSS - |                   | VDD1<br>VDD2<br>VSS |                            |  |  |  |
| CFIN    | CFIN and CFOU                       | T function as t                                                                                                                              | he ceramic filter         | connections, oth  | erwise they are     | left open.                 |  |  |  |
| CFOUT   | The oscillator ha                   | The oscillator halts after a HOLD or SLOW instruction.                                                                                       |                           |                   |                     |                            |  |  |  |

No. 3410--12/19

| Name          | Function                                                                                                                                       |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| \$1/A00       |                                                                                                                                                |  |  |  |
| S2/A01        | Port S functions as address bus inputs when the EPROM is addressed. Port S pins have                                                           |  |  |  |
| \$3/A02       | internal key-debounde circuits. The 1.95 or 7.8 ms (at $\varphi_0 = 32.768$ kHz) debounde delay period is selected by software.                |  |  |  |
| S4/A03        |                                                                                                                                                |  |  |  |
| K1/D0         |                                                                                                                                                |  |  |  |
| K2/D1         | Port K functions as data bus lines when the EPROM is addressed. Port K pins have internal                                                      |  |  |  |
| K3⁄D2         | input key-debounce circuits. The delay period is the same as the port S debounce delay.                                                        |  |  |  |
| К4/D3         |                                                                                                                                                |  |  |  |
| M1/A04        |                                                                                                                                                |  |  |  |
| M2/A05        | Port M functions as address bus inputs when the EPROM is addressed. M3 also functions as                                                       |  |  |  |
| M3/A06        | external clock period is double the cycle time.                                                                                                |  |  |  |
| M4/A07        |                                                                                                                                                |  |  |  |
| N1            |                                                                                                                                                |  |  |  |
| N2            | N4 functions as the 1, 2, or 4 kHz (at op = 32.768 kHz) atarm signal output (when the N4                                                       |  |  |  |
| N3            | output latch is LOW).                                                                                                                          |  |  |  |
| N4            |                                                                                                                                                |  |  |  |
| TST/VPP       | TST functions as the VPP input when the EPROM is addressed. It is normally connected to ground.                                                |  |  |  |
| SEG1 to SEG35 | SEG1 to SEG35 function as LCD segment drivers or general-purpose outputs. The function of individual outputs are set as configuration options. |  |  |  |

# **Configuration Options**

## Oscillator

,

The oscillator options are ceramic filter, crystal, and both ceramic filter and crystal. When the crystal oscillator is used, the oscillator frequency options are 32, 38 or 65 kHz. The ceramic filter and crystal oscillator options are shown in figures 7 and 8, respectively.





۰.,

Figure 8. Crystal oscillator

Figure 7. Ceramic filter oscillator

No. 3410-13/19

#### Input Ports

Ports S, K, P, SO and A input options are hold transistor and input transistor configurations as shown in figure 9. The hold transistor options are LOW-level hold transistor, HIGH-level hold transistor and no hold transistor enabled. The input options are pull-up and pull-down transistors enabled.



Figure 9. Ports S, K, P, SO and A input circuit Note

Configuration data determines switch settings.

#### Outputs

#### SEG1 to SEG35

The SEG1 to SEG35 options are LCD driver or general-purpose outputs, LCD driver bias and duty configuration, general-purpose output configuration and output latch state in STOP mode. The LCD driver and general-purpose output function selection is hard coded in the PLA and, therefore, cannot be selected by sof-tware.

The LCD driver bias and duty configuration is set for all LCD drivers. The configuration options are as follows.

- Static
- 1/2-bias and 1/2-duty
- 1/2-bias and 1/3-duty
- 1/2-bias and 1/4-duty
- 1/3-bias and 1/3-duty
- 1/3-bias and 1/4-duty

The general-purpose output configuration is set for individual outputs. The options are CMOS, p-channel open-drain and n-channel open-drain. The p-channel and n-channel output equivalent circuits are shown in figures 10 and 11, respectively.



Figure 11. n-channel output

The output latch state of all LCD drivers and general-purpose outputs can be reset in standby mode. The options are reset and no change.

#### Port N

Port N outputs are n-channel open-drain as shown in figure 12.



Figure 12. Port N open-drain outputs

#### Serial Data Clock

The SO3 clock divider ratio options are 1/1, 1/2 and 1/4.

#### Interrupt Request

The interrupt request input options are hold transistor, input transistor and interrupt request trigger configurations. The input hold transistor and input transistor options are the same as for the port inputs. The interrupt request trigger options are rising-edge and falling-edge triggering.



Vas

Figure 10. p-channel output

No. 3410-14/19

v

## **Design Information**

**Development Process** 

The LC5860 series software development tools, EC5868.EXE software and a general-purpose PROM programmer with a W58E68Q adapter board are

required for LC58E68 program development. The development flowchart is shown in figure 13.

.



Figure 13. Development flowchart

No. 3410-15/19

## LC586X series software development tools

These tools are used on an MS-DOS computer to create programs and option data. See the LC586X series development tools manual for further information.

#### EC5868.EXE

۰.,

This program combines an LC586X series program with the configuration option data generated by the option



data software and converts the result to LC58E68 EPROM downloading format as shown in figure 14.









Figure 14. Conversion to EPROM format

No. 3410-16/19

```
LC58E68
```

For example, to convert the ROMSAMP.HEX program file and the PLASAMP.HEX option data file into the

EP-SAMP.HEX download-format file, enter one of the following commands at the command line:

A program completion message is output at the end of conversion.

If an error occurs, the program will issue one of the following error messages.

- Error ON filename.HEX, FILE NOT FOUND The file filename.HEX was not found or the file name was incorrect.
- Error ON, MAKE LC5864H, 63H, 62H The ROM data and option data are not consistent. The cross assembler and option data software used should be for the same device.
- Error ON filename.HEX, EOF NOT DETECTED The file filename.HEX does not have a record end marker or the file is corrupted.
- Error ON filename.HEX, ILLEGAL CHARACTER

The file filename.HEX contains a non-hexadecimal character.

- Error ON filename.HEX, ADDRESS OVER An address in the file filename.HEX exceeds the address limit.
- Error ON filename.HEX, ILLEGAL FILE HDR.

The file filename.HEX does not have the correct LC586X series header or there is an error in the hex file.

• Error ON command line input, INVALID NUMBER OF PARAMETERS The number of personators entered on the command

The number of parameters entered on the command line is incorrect.

• Error ON ILLEGAL, MASK OPTION DATA The mask option data is incorrect. Note that the programmer provided with the EVA-520 and EVA-850 development tools cannot be used. Set the programmer for a 256 Kbyte PROM,  $V_{PP} = 21$  V and program addresses 0000H to 40FFH.

The W58E68Q adapter board, shown in figure 15, is placed in the PROM programmer socket and the LC58E68 to be programmed, in the W58E68Q adapter.



Figure 15. W58E68Q adapter board

Affix an opaque seal to the window of the programmed LC58E68 when not programming the EPROM.

#### Erasing the EPROM

The EPROM data can be erased with a standard UV EPROM eraser.

# PROM programmer and W58E68Q adapter board

Programming the LC58E68 requires a general-purpose PROM programmer and a W58E68Q adapter board.

## Soldering

Do not use the solder-dip process for soldering the LC58E68.

No. 3410--17/19

#### **Reset Timing**

The reset state is released following a HIGH-to-LOW transition on RES. Configuration options and the segment output control PLA are initialized during the next 256 clock cycles. The program counter is then reset and

## **Ordering Information**

Typically, a mask ROM LC586X series device is ordered after a system has been prototyped with the LC58E68. However, a programmed LC58E68 or an LC58E68-format hex file cannot be used to specify the mask ROM device.

When ordering, provide three EPROMs each containing the mask ROM program generated using a standard Table 1. Electrical characteristics comparison program execution begins. Configuration options are invalid and segment outputs are held at  $V_{SS}$  from when RES goes HIGH until the options are initialized.

assembler and another three EPROMs each containing the option data generated using the option specification tool.

A comparison of LC58E68 characteristics with those of LC586X series mask ROM devices is shown in tables 1 and 2.

| Parameter                        | Symbol          | Conditions                                        | LC58E68    | LC586X series | Unit |  |
|----------------------------------|-----------------|---------------------------------------------------|------------|---------------|------|--|
| Operating temperature range      | Topr            |                                                   | 10 to 40   | 30 to 70      | °C   |  |
| Supply voltage range             | V <sub>DD</sub> |                                                   | 2.8 to 5.5 | 2.0 to 6.0    | ۷    |  |
| Typical halt-mode supply current |                 | V <sub>DD</sub> = 3 V, f <sub>xtal</sub> = 32 kHz | 5          | 4             |      |  |
|                                  |                 | $V_{DD} = 5 V$ , $f_{xtal} = 32 kHz$              | 20         | 15            |      |  |
|                                  | i <sub>DD</sub> | $V_{DD} = 5 V$ , $f_{cer} = 400 \text{ kHz}$      | 400        | 400           | μΑ   |  |
|                                  |                 | V <sub>DD</sub> = 5 V, f <sub>cer</sub> = 2 MHz   | 500        | 500           |      |  |
|                                  |                 | $V_{DD} = 5 V$ , $f_{cer} = 4 MHz$                | 700        | 700           |      |  |

Table 2. Configuration comparison

| Parameter LC58E68                           |                                                                                                                                                 | LC586X devices                                                                                                                                        |  |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| LCD segment and common outputs during reset | Segment outputs are CMOS and are held at $V_{SS}$ . Common outputs are n-channel and open-drain.                                                | Static operation                                                                                                                                      |  |  |
| Segment output state after reset            | Not displayed                                                                                                                                   | Displayed or not displayed                                                                                                                            |  |  |
| Oscillator circuit type                     | Ceramic filler, crystal, or ceramic filter and crystal                                                                                          | Ceramic filter, crystal, ceramic filter and crystal,<br>RC circuit, RC circuit and crystal, external oscillator<br>or external oscillator and crystal |  |  |
| Crystal frequency                           | 32, 38 or 65 kHz (65 kHz during reset)                                                                                                          | 32, 38 or 65 kHz                                                                                                                                      |  |  |
| RES reset input                             | Active-HIGH                                                                                                                                     | Active-LOW, active-LOW with pull-up, active-HIGH or<br>active-HIGH with pull-up                                                                       |  |  |
| Port N outputs                              | Open-drain                                                                                                                                      | Open-drain or CMOS                                                                                                                                    |  |  |
| LCD drive type                              | Static, 1/2-bias and 1/2-duty, 1/2-bias and 1/3-duty, 1/2-bias<br>and 1/4-duty, 1/3-bias and 1/3-duty or 1/3-bias and 1/4-duty<br>(See note 1.) | is Static, 1/2-bias and 1/2-duty, 1/2-bias and 1/3-duty, 1/2-bias and 1/3-duty, 1/3-bias and 1/3-duty, 1/3-bias and 1/4-duty or unused                |  |  |
| 'Strobe No.' range                          | 00H to 1EH (See note 2.)                                                                                                                        | 00H to 1EH                                                                                                                                            |  |  |

Notes

1. Configure as static drive if not used.

•

2. Strobe numbers 00 to 1EH can be used in applications that use a 2 MHz ceramic resonator. Strobe numbers 0E, 0F and 1EH cannot be used in applications that use a 4 MHz ceramic resonator.

No. 3410-18/19

| LC58 | <b>E6</b> | 8 |
|------|-----------|---|
|------|-----------|---|

The LC586X series devices, including the LC58E68, are shown in table 3.

Table 3. LC586X series devices

| Device  | ROM capacity (Kbytes) | RAM capacity (bits) | Package type |
|---------|-----------------------|---------------------|--------------|
| LC5862H | 4                     | 256 × 4             | QIP80        |
| LC5863H | 6                     | 256 × 4             | QIP80        |
| LC5864H | 8                     | 256 × 4             | QIP80        |
| LC5866H | 12                    | 256 × 4             | QIP80        |
| LC5868H | 16                    | 256 × 4             | QIP80        |
| LC58E68 | 16 (EPROM)            | 256 × 4             | QFC80        |

Table 4. Recommended ceramic resonators for LC5862H/63H/64H/66H/68H mask ROMs

| · · · · · · · · · · · · · · · · · · · | Manufacturer           |                      |                      |             |                      |                      |  |
|---------------------------------------|------------------------|----------------------|----------------------|-------------|----------------------|----------------------|--|
| Resonator frequency                   | Murata                 |                      |                      | Kyocera     |                      |                      |  |
|                                       | Part number            | C <sub>cg</sub> (pF) | C <sub>cd</sub> (pF) | Part number | C <sub>cg</sub> (pF) | C <sub>cd</sub> (pF) |  |
| 400 kHz                               | CSB400P                | 330                  | 330                  | KBR-400B    | 330                  | 330                  |  |
| 800 kHz                               | CSB800J                | 220                  | 220                  | KBR-800H    | 100                  | 100                  |  |
| 1 MHz                                 | CSB1000J               | 220                  | 220                  | KBR-1000H   | 100                  | 100                  |  |
| 2 MHz                                 | CSA2.00MG<br>CST2.00MG | 33                   | 33                   | KBR-2.0MS   | 33                   | 33                   |  |
| 4 MHz                                 | CSA4.00MG<br>CST4.00MG | 33                   | 33                   | KBR-4.0MS   | 33                   | 33                   |  |

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

No. 3410-19/19