

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

Overview

The LC72131K and LC72131KMA are PLL frequency synthesizers for use in tuners in radio/cassette players. They allow high-performance AM/FM tuners to be implemented easily.

Features

- High speed programmable dividers
 - FMIN: 10 to 160MHz pulse swallower (built-in divide-by-two prescaler)
 - AMIN: 2 to 40MHz pulse swallower 0.5 to 10MHz direct division
- IF counter
 - IFIN: 0.4 to 12MHz AM/FM IF counter
- Reference frequencies
 - Twelve selectable frequencies (4.5 or 7.2MHz crystal)
 - 100, 50, 25, 15, 12.5, 6.25, 3.125, 10, 9, 5, 3, 1kHz
- Phase comparator
 - Dead zone control
 - Unlock detection circuit
 - Deadlock clear circuit
 - Built-in MOS transistor for forming an active low-pass filter
- I/O ports
 - Dedicated output ports: 4 Input or output ports: 2 Support clock time base output
- Serial data I/O
- Support CCB format communication with the system controller.

Continued on next page.

- CCB is a registered trademark of SANYO Semiconductor Co., Ltd.
- CCB is SANYO Semiconductor's original bus format. All bus addresses are managed by SANYO Semiconductor for this format.
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd.

http://www.sanyosemi.com/en/network/

Continued from preceding page.

- Operating ranges
 - Supply voltage4.5 to 5.5V
- Operating temperature -40 to +85°C

- Packages
 - DIP22S(300mil) / MFP20J(300mil)

Specifications

Absolute Maximum Ratings at Ta = 25°C, $V_{SS} = 0V$

Parameter	Symbol	Pins	Conditions	Ratings	Unit
Supply voltage	V _{DD} max	V _{DD}		-0.3 to +7.0	V
Maximum input voltage	V _{IN} 1 max	CE, CL, DI, AIN		-0.3 to +7.0	V
	V _{IN} 2 max	XIN, FMIN, AMIN, IFIN		-0.3 to V _{DD} +0.3	V
	V _{IN} 3 max	ĪO1, ĪO2		-0.3 to +15	V
Maximum output voltage	V _O 1 max	DO		-0.3 to +7.0	V
	V _O 2 max	XOUT, PD		-0.3 to V _{DD} +0.3	V
	V _O 3 max	BO1 to BO4, IO1, IO2, AOUT		-0.3 to +15	V
Maximum output current	I _O 1 max	BO1		0 to 3.0	mA
	I _O 2 max	DO, AOUT		0 to 6.0	mA
	I _O 3 max	BO2 to BO4, IO1, IO2		0 to 10	mA
Allowable power dissipation	Pd max		Ta≤85°C [LC72131K]	350	mW
			Ta≤85°C [LC72131KMA]	180	mW
Operating temperature	Topr			-40 to +85	°C
Storage temperature	Tstg			-55 to +125	°C

Note 1: Power pins V_{DD} and V_{SS}: Insert a capacitor with a capacitance of 2,000pF or higher between these pins when using the IC.

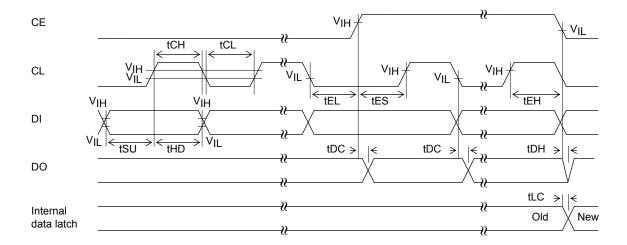
Allowable Operating Ranges at Ta = -40°C to +85°C, $V_{SS} = 0V$

Devented	Comple at	Dina	Conditions		Ratings		unit
Parameter	Symbol	Pins	Conditions	min	typ	max	unit
Supply voltage	V_{DD}	V_{DD}		4.5		5.5	V
Input high-level voltage	V _{IH} 1	CE, CL, DI		0.7V _{DD}		6.5	V
	V _{IH} 2	ĪO1, ĪO2		0.7V _{DD}		13	V
Input low-level voltage	V _{IL}	CE, CL, DI, $\overline{\text{IO1}}$, $\overline{\text{IO2}}$		0		0.3V _{DD}	V
Output voltage	V _O 1	DO		0		6.5	V
	V _O 2	BO1 to BO4, IO1, IO2, AOUT		0		13	٧
Input frequency	fIN1	XIN	V _{IN} 1	1.0		8.0	MHz
	fIN2	FMIN	V _{IN} 2	10		160	MHz
	fIN3	AMIN	V _{IN} 3	2.0		40	MHz
	fIN4	AMIN	V _{IN} 4	0.5		10	MHz
	fIN5	IFIN	V _{IN} 5	0.4		12	MHz
Supported crystals	X'tal	XIN, XOUT	Note 1	4.0		8.0	MHz
Input amplitude	V _{IN} 1	XIN	fIN1	400		1500	mVrms
	V _{IN} 2-1	FMIN	f=10 to 130MHz	40		1500	mVrms
High-level clock pulse width tφH CL [Figure 1][Figure 2] 160 ns	V _{IN} 2-2	FMIN	f=130 to 160MHz	70		1500	mVrms
Low-level clock pulse width	V _{IN} 3	AMIN	fIN3	40		1500	mVrms
	V _{IN} 4	AMIN	fIN4	40		1500	mVrms
	V _{IN} 5	IFIN	fIN5 (IFS=1)	40		1500	mVrms
	V _{IN} 6	IFIN	fIN5 (IFS=0)	70		1500	mVrms
Data setup time	tSU	DI, CL	Note 2	0.75			μS
Data hold time	tHD	DI, CL	Note 2	0.75			μS
Clock low-level time	tCL	CL	Note 2	0.75			μS
Clock high-level time	tCH	CL	Note 2	0.75			μS
CE wait time	tEL	CE, CL	Note 2	0.75			μS
CE setup time	tES	CE, CL	Note 2	0.75			μS
CE hold time	tEH	CE, CL	Note 2	0.75			μS
Data latch change time	tLC		Note 2			0.75	μS
Data output time	tDC	DO, CL	Differs depending				
	tDH	DO, CE	on the value of the pull-up resistor. Note 2			0.35	μS

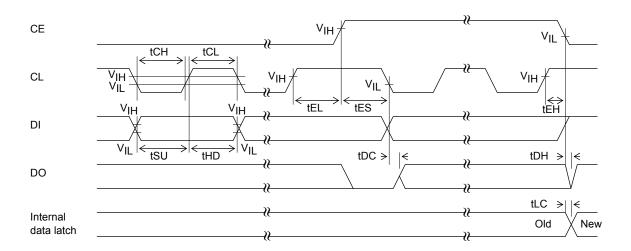
Note 1: Recommended crystal oscillator CI values:

CI≤120Ω (For a 4.5MHz crystal)

CI≤70Ω (For a 7.2MHz crystal)

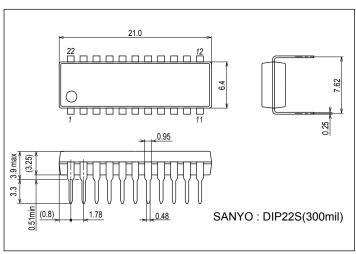

The characteristics of the oscillation circuit depends on the printed circuit board, circuit constants, and other factors. Therefore we recommend consulting with the anufacturer of the crystal for evaluation and reliability.

Note 2: Refer to "Serial Data Timing".

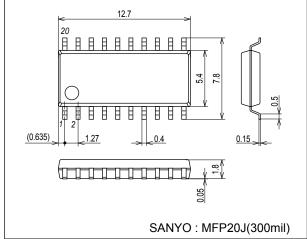

Electrical Characteristics in the Allowable Operating Ranges

Parameter	Symbol	Pins	Conditions	-	Ratings		unit
				min	typ	max	
Built-in feedback resistance	Rf1	XIN			1.0		ΜΩ
	Rf2	FMIN			500		kΩ
	Rf3	AMIN			500		kΩ
	Rf4	IFIN			250		kΩ
Built-in pull-down resistor	Rpd1	FMIN			200		kΩ
	Rpd2	AMIN			200		kΩ
Hysteresis	VHYS	CE, CL, DI, IO1, IO2			0.1V _{DD}		V
Output high-level voltage	V _{OH}	PD	I _O =1mA	V _{DD} -0.1			V
Output low-level voltage	V _{OL} 1	PD	I _O =1mA			1.0	V
	V _{OL} 2	BO1	I _O =0.5mA			0.5	V
			I _O =1mA			1.0	V
	V _{OL} 3	DO	I _O =1mA			0.2	V
			I _O =5mA			1.0	V
	V _{OL} 4	BO2 to BO4, IO1, IO2	I _O =1mA			0.2	V
	I JOL.		I _O =5mA			1.0	V
			I _O =8mA				V
	Va. 5	AOUT	I _O =1mA AIN=1.3V			1.6	V
land think land account	V _{OL} 5					0.5	
Input high-level current	I _{IH} 1	CE, CL, DI	V _I =6.5V			5.0	μΑ
	I _{IH} 2		V _I =13V			5.0	μΑ
	I _{IH} 3	XIN	V _I =V _{DD}	2.0		11	μΑ
	I _{IH} 4	FMIN, AMIN	V _I =V _{DD}	4.0		22	μΑ
	I _{IH} 5	IFIN	V _I =V _{DD}	8.0		44	μΑ
	I _{IH} 6	AIN	V _I =6.5V			200	nA
Input low-level current	I _{IL} 1	CE, CL, DI	V _I =0V			5.0	μΑ
	I _{IL} 2	ĪO1, ĪO2	V _I =0V			5.0	μΑ
	I _{IL} 3	XIN	V _I =0V	2.0		11	μΑ
	I _{IL} 4	FMIN, AMIN	V _I =0V	4.0		22	μА
	I _{IL} 5	IFIN	V _I =0V	8.0		44	μΑ
	I _{IL} 6	AIN	V _I =0V			200	nA
Output off leakage current	IOFF1	BO1 to BO4, AOUT, IO1, IO2	V _O =13V			5.0	μА
-	IOFF2	DO	V _O =6.5V			5.0	μΑ
High-level three-state off leakage current	IOFFH	PD	V _O =V _{DD}		0.01	200	nA
Low-level three-state off leakage current	IOFFL	PD	V _O =0V		0.01	200	nA
Input capacitance	CIN	FMIN			6		pF
Current drain	I _{DD} 1	V _{DD}	X'tal=7.2MHz				
			f _{IN} 2=130MHz		5	10	mA
			V _{IN} 2=40mVrms				
	I _{DD} 2	V_{DD}	PLL block stopped				
			(PLL INHIBIT) X'tal oscillator		0.5		m <i>A</i>
			operating		0.5		111/-
			(X'tal=7.2MHz)				
	I _{DD} 3	V_{DD}	PLL block stopped				
			X'tal oscillator			10	μΑ
			operating	1			

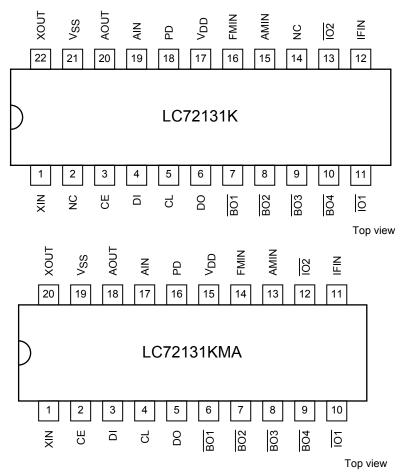
Serial Data Timing


When stopped with CL low

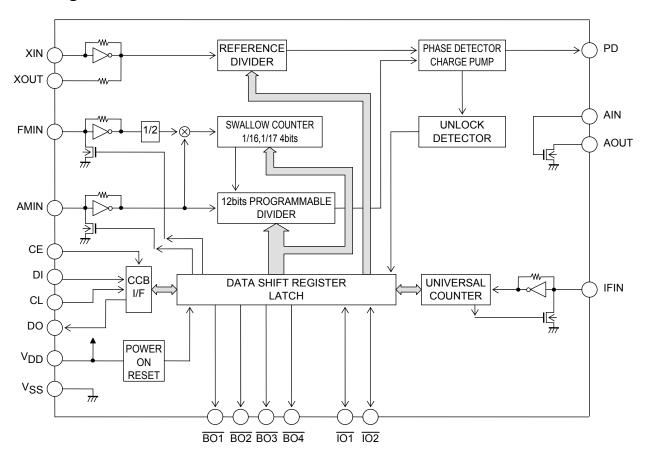
When stopped with CL high


Package Dimensions

unit : mm (typ) 3059A [LC72131K]



Package Dimensions

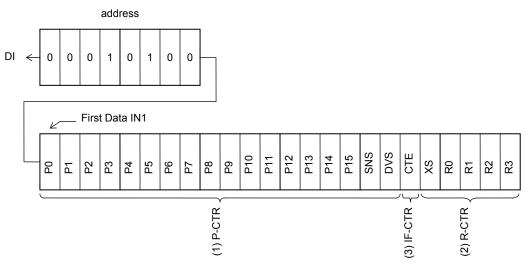

unit : mm (typ) 3445 [LC72131KMA]

Pin Assignments

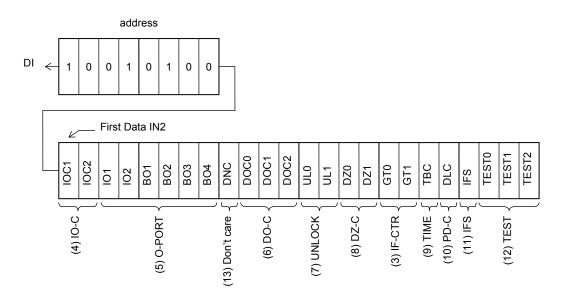
Block Diagram

Pin Functions

Cumbal	Pin	No.	Turno	Functions	Circuit configuration
Symbol	LC72131K	LC72131KMA	Туре	Functions	Circuit configuration
XIN XOUT	1 22	1 20	X'tal OSC	Crystal resonator connection (4.5MHz/7.2MHz)	
FMIN	16	14	Local oscillator signal input	FMIN is selected when the serial data input DVS bit is set to 1. The input frequency range is from 10 to 160MHz. The input signal passes through the internal divide-by-two prescaler and is input to the swallow counter. The divisor can be in the range 272 to 65535. However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value.	
AMIN	15	13	Local oscillator signal input	AMIN is selected when the serial data input DVS bit is set to 0. When the serial data input SNS bit is set to 1: • The input frequency range is 2 to 40MHz. • The signal is directly input to the swallow counter. • The divisor can be in the range 272 to 65535, and the divisor used will be the value set. When the serial data input SNS bit is set to 0: • The input frequency range is 0.5 to 10MHz. • The signal is directly input to a 12-bit programmable divider. • The divisor can be in the range 4 to 4095, and the divisor used will be the value set.	
CE	3	2	Chip enable	Set this pin high when inputting (DI) or outputting (DO) serial data.	<u> </u>
DI	4	3	Input data	Inputs serial data transferred from the controller to the LC72131K/KMA.	
CL	5	4	Clock	Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	<u> </u>
DO	6	5	Output data	Outputs serial data transferred from the LC72131K/KMA to the controller. The content of the output data is determined by the serial data DOC0 to DOC2.	
V_{DD}	17	15	Power supply	The LC72131K/KMA power supply pin (V _{DD} =4.5 to 5.5V) The power on reset circuit operates when power is first applied.	-
V _{SS}	21	19	Ground	The LC72131K/KMA ground	-
BO1 BO2 BO3 BO4	7 8 9 10	6 7 8 9	Output port	Dedicated output pins The output states are determined by $\overline{BO1}$ to $\overline{BO4}$ bits in the serial data. Data: 0=open, 1=low A time base signal (8Hz) can be output from the $\overline{BO1}$ pin. (When the serial data TBC bit is set to 1.) Care is required when using the $\overline{BO1}$ pin, since it has a higher on impedance that the other output ports (pins $\overline{BO2}$ to $\overline{BO4}$).	
ĪO1 ĪO2	11 13	10 12	I/O port	I/O dual-use pins The direction (input or output) is determined by bits IOC1 and IOC2 in the serial data. Data: 0=input port, 1=output port When specified for use as input ports: The state of the input pin is transmitted to the controller over the DO pin. Input state: low=0 data value high=1 data value When specified for use as output ports: The output states are determined by the IO1 and IO2 bits in the serial data. Data: 0=open, 1=low These pins function as input pins following a power on reset.	


Continued on next page.

Continued from preceding page.


0	Pin	No.	-	E coltico	01
Symbol	LC72131K	LC72131KMA	Туре	Functions	Circuit configuration
PD	18	16	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level is output from the PD pin. Similarly, when that frequency is lower, a low level is output. The PD pin goes to the high impedance state when the frequencies match.	
AIN AOUT	19 20	17 18	LPF amplifier transistors	The n-channel MOS transistor used for the PLL active low-pass filter.	
IFIN	12	11	IF counter	Accepts an input in the frequency range 0.4 to 12MHz. The input signal is directly transmitted to the IF counter. The result is output starting the MSB of the IF counter using the DO pin. Four measurement periods are supported: 4, 8, 32, and 64ms.	

DI Control Data (Serial Data Input) Structure

[1] IN1 mode

[2] IN2 mode

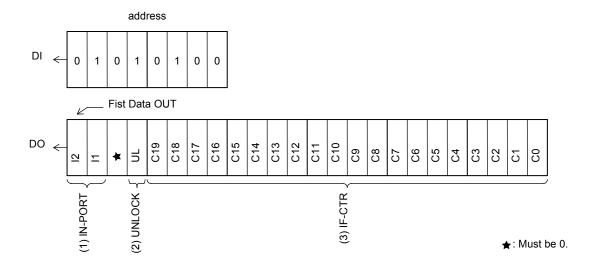
Control Data Functions

No.	Control block/data					Functions		Related data
(1)	Programmable	Data that	sets the div	isor of the	programm	able divider.		
	divider data	A binary v	alue in whi	ch P15 is	the MSB. T	he LSB changes de	epending on	
	P0 to P15	DVS and S	SNS. (*: do	on't care)				
		DVS	SNS	LSB	Divi	sor setting (N)	Actual divisor	
		1	*	P0	2	72 to 65535	Twice the value of the setting	
		0	1	P0	2	72 to 65535	The value of the setting	
		0	0	P4		4 to 4095	The value of the setting	
		Note: P0 t	o P3 are ig	nored whe	en P4 is the	LSB.		
	DVS, SNS	Selects the				I) for the programm	able divider, switches	
		DVS	SNS		Input pin		Input frequency range	
		1	*		FMIN		10 to 160MHz	
			1		AMIN		2 to 40MHz	
		0	0		AMIN		0.5 to 10MHz	
		Note: See	the "Progr	ammable	Divider Stru	cture" item for more	e information.	
(2)	Reference divider				ection data.			
	data	R3	R2	R1	R0	Ref	erence frequency	
	R0 to R3	0	0	0	0		100kHz	
		0	0	0	1		50	
		0	0	1	0		25	
		0	0	1	1		25	
		0	1	0	0		12.5	
		0	1	0	1		6.25	
		0	1	1	0		3.125	
		0	1	1	1		3.125	
			0	0	0		10	
			0	0	1		9	
		1 1	0	1	0		5	
		l 		1				
			1	0	0		3	
		1	1	0	1		15	
		1	1	1	0	* PLL IN	HIBIT + X'tal OSC STOP	
		1	1	1	1	* [PLL INHIBIT	
		an	e program	are set to			ock are stopped, the FMIN, AMIN, and the charge pump goes to the	
	xs	Crystal res XS=0: 4 XS=1: 7	.5MHz .2MHz					
(0)						the power-on reset.		
(3)	IF counter control	IF counter			data			IFS
	data		ounter star					
	CTE	=0: Counter reset						
	GT0, GT1	Determine	s the IF co	unter mea	surement p	eriod.		
		GT1	G	T0	Measure	ment time (ms)	Wait time (ms)	
		0		0		4	3 to 4	
		0		1		8	3 to 4	
		1 1		0		32	7 to 8	
			1	1 l		64	7 to 8	

Continued on next page.

Continued from preceding page.

No.	Control block/data				Functions	3		Related data						
(4)	I/O port specification	Specifies the	e I/O direction	on for the bidire	ectional pins IC	1 and IO2.								
	data	Data: 0=ir	nput mode,	1=output mode	•									
(5)	IOC1, IOC2	Data that da	4		h = <u>PO1</u> + = <u>PO1</u>	I, IO1 and IO2 output ports		1004						
(5)	Output port data BO1 to BO4		pen, 1=low	e output from t	ne bo i to bo²	r, 101 and 102 output ports		IOC1 IOC2						
	IO1, IO2			is selected af	ter the power-c	on reset		1002						
(6)	DO pin control data			e DO pin outpu				UL0, UL1						
	DOC0	DOC2	DOC1	DOC0		Do pin state		CTE						
	DOC1	0	0	0	Open									
	DOC2		0	1		en the unlock state is detected								
		0	1	0	end-UC			IOC1						
		0	1	1	Open			IOC2						
		1	0	0	Open									
		1	0	1	The IO1	pin state *2								
		1	1	0	The IO2	pin state *2								
		1	1	1	Open									
		The open st	ate is select	ed after the po	wer-on reset.									
		Note: 1. end	I-UC: Check	for IF counter	r IF counter measurement completion									
		DO pin			— ≀≀——									
		DO pin		_\\'\'		√ ≀/								
			(1)	Count start	(2) C	ount end (3)CE: High								
		(1)	When end-l	UC is set and t	he IF counter is	s started (i.e., when CTE is change	d from							
					, 0	pes to the open state.								
		` ′			•	pletes, the DO pin goes low to indica	ate the							
				ent completion on serial data		the DO pin goes to the open state.								
		` ′			,	ied to be an output port.								
					•	period (an IN1 or IN2 mode period v	with CE							
				-		the DO control data (DOC0 to DOC								
		Als	o, the DO p	in during a dat	a output period	(an OUT mode period with CE hig	h) will							
		out	put the cont	ents of the inte	ernal DO serial	data in synchronization with the CL	_ pin							
		sig	nal, regardle	ess of the state	e of the DO cor	trol data (DOC0 to DOC2).								
(7)	Unlock detection	1		. ,	width for chec	•		DOC0						
	data	A phase erro	or in excess	of the specifie	ed detection wid	Ith is seen as an unlocked state.		DOC1						
	UL0, UL1	UL1		DOC2										
		0	0	sto	pped	Open								
		0	1		0	φE is output directry								
		1	0	±0.	55μs	φE is extended by 1 to 2ms								
		1	1	±1	1.11	<u> </u>								
		Note: In the	unlocked st	ate the DO pin	goes low and	the UL bit in the serial data become	es zero.							
	•			'	-			_						

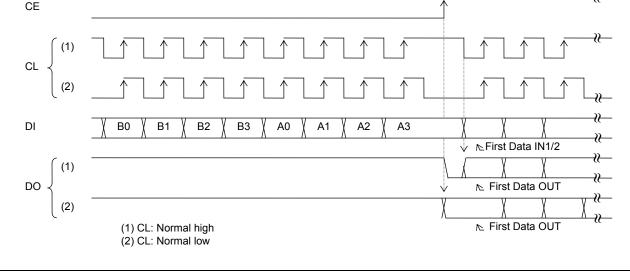

Continued on next page.

Continued from preceding page.

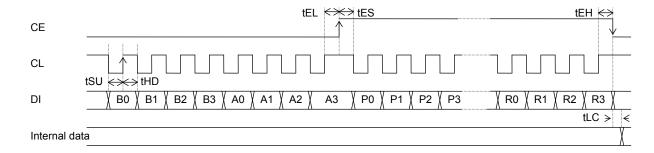
No.	Control block/data			i	Functions	Related data						
(8)	Phase comparator control data	Controls	the phas	e comparator dead zone.								
	DZ0, DZ1	DZ1	DZ0	Dead zone mode								
	-,	0	0	DZA								
		0										
			1 0 DZC									
			1	DZD								
		Dead zon	e width: D	ZA <dzb<dzc<dzd< td=""><td></td><td></td></dzb<dzc<dzd<>								
(9)	Clock time base TBC		Setting TBC to one causes an 8Hz, 40% duty clock time base signal to be output from the BO1 bin. (BO1 data is invalid in this mode.)									
(10)	Charge pump control	· ` `	Forcibly controls the charge pump output.									
(,	data	ا ا			7							
	DLC	DLC	C	harge pump output								
	-	0		Normal operation								
		1		Forced low								
		Note: If de	eadlock o	ccurs due to the VCO cor	ntrol voltage (Vtune) going to zero and the VCO							
		osc	illator stop	oping, deadlock can be cl	eared by forcing the charge pump output to low and							
		sett	ing Vtune	to V _{CC} . (This is the dea	dlock clearing circuit.)							
(11)	IF counter control	This data	must be s	set 1 in normal mode.								
	data	IFS Tho	ough if this	s value is set to zero, the	system enters input sensitivity degradation mode,							
	IFS	and the	sensitivit	y is reduced to 10 to 30m	Vrms.							
		* See th	ne "IF Cou	inter Operation" item for	details.							
(12)	LSI test data	LSI test d	ata									
	TEST0 to 2	TEST0 -	TESTO 7									
		TEST1										
		TEST2 _	J									
		These tes	t data are	set to 0 automatically af	ter the power-on reset.							
(13)	DNC	Don't care	e. This da	ta must be set to 0.								

DO Control Data (Serial Data Output) Structure

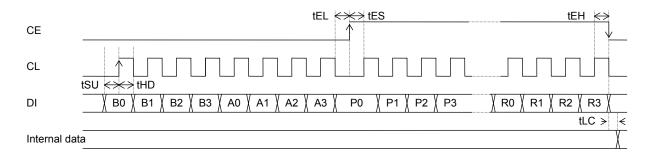
[3] OUT Mode


Control Data Functions

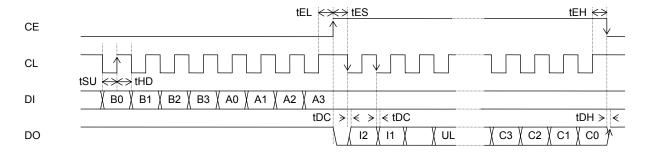
No.	Control block/data	Functions	Related data
(1)	I/O port data	Latched from the pin states of the $\overline{\rm IO1}$ and $\overline{\rm IO2}$ I/O ports.	IOC1
	12, 11	These values follow the pin states regardless of the input or output setting.	IOC2
		I1 ← $\overline{\text{IO1}}$ pin state	
		$12 \leftarrow \overline{102}$ pin state \Box Low: 0	
(2)	PLL unlock data	Latched from the state of the unlock detection circuit.	UL0
	UL	UL ← 0: Unlocked	UL1
		UL ← 1: Locked or detection stopped mode	
(3)	IF counter binary	Latched from the value of the IF counter (20-bit binary counter).	CTE
	counter	C19 \leftarrow MSB of the binary counter	GT0
	C19 to C0	C0 ← LSB of the binary counter	GT1


Serial Data I/O Methods

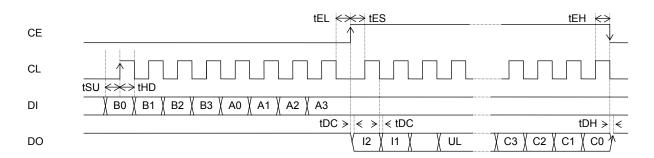
The LC72131K/KMA inputs and outputs data using the SANYO CCB (computer control bus) audio LSI serial bus format. This


TOTHIAL		4	C		COL												
LSI au	opts an 8-bi	t add	ress i	orma						Т							
	I/O mode		1	1		ress		ı	1	Function							
		B0	B1	B2	В3	A0	A1	A2	A3								
										Control data input mode (serial data input)							
[1]	IN1 (82)	0	0	0	1	0	1	0	0	• 24 data bits are input.							
										See the "DI Control Data (serial data input) Structure" item for details the graphing of the input data.							
										on the meaning of the input data.							
										Control data input mode (serial data input)							
[2]	IN2 (92)	1	0	0	1	0	1	0	0	24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details							
										` ' '							
										on the meaning of the input data. • Data output mode (serial data output)							
[3]	OUT (A2)	0	1	0	1	0	1	0	0	The number of bits output is equal to the number of clock cycles. See the "DO Control Data (serial data output) Structure" item for details							
										on the meaning of the output data.							
										on the meaning of the output data.							
										I/O mode determined							
																	
С	E _																
	(1)	7		\uparrow	一		\uparrow	1 1									

- 1. Serial Data Input (IN1/IN2) tSU, tHD, tES, tEH≥0.75µs tLC<0.75µs
 - (1) CL: Normal high

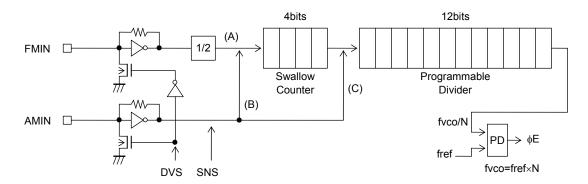


(2) CL: Normal low



2. Serial Data Output (OUT) tSU, tHD, tEL, tES, tEH \geq 0.75 μ s tDC, tDH<0.35 μ s

(1) CL: Normal high



(2) CL: Normal low

Note: Since the DO pin is an N-channel open-drain pin, the time for the data to change (tDC and tDH) will differ depending on the value of the pull-up resistor and printed circuit board capacitance.

Programmable Divider Structure

	DVS	SNS	Input pin	Set divisor	Actual divisor: N	Input frequency range
(A)	1	*	FMIN	272 to 65535	Twice the set value	10 to 160MHz
(B)	1	1	AMIN	272 to 65535	The set value	2 to 40MHz
(C)	0	0	AMIN	4 to 4095	The set value	0.5 to 10MHz

^{*:} Don't care

Programmable Divider Calculation Examples

(1) FM, 50kHz steps (DVS=1, SNS=*: FMIN selected)

FM RF=90.0MHz (IF=+10.7MHz)

FM VCO=100.7MHz

PLL fref=25kHz (R0 to R1=1, R2 to R3=0)

100.7MHz (FMVCO)÷25kHz (fref) ÷2 (FMIN: divide-by-two prescaler) =2014→07DE (HEX)

	E	Ξ		D			7 0																
_										$\overline{}$	_		_										
0	1	1	1	1	0	1	1	1	1	1	0	0	0	0	0	*	1			1	1	0	0
Po	<u>P</u>	P2	РЗ	P4	P5	P6	P7	B8	P3	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	XS	R0	Σ	R2	R3

(2) SW 5kHz steps (DVS=0, SNS=1: AMIN high-speed side selected)

SW RF=21.75MHz (IF=+450kHz)

SW VCO=22.20MHz

PLL fref=5kHz (R0=R2=0, R1=R3=1)

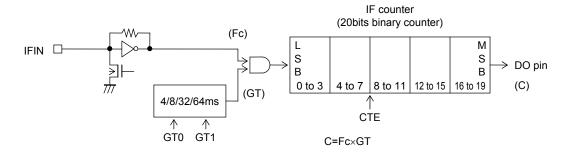
22.2MHz (SW VCO) ÷5kHz (fref) =4440→1158 (HEX)

	8				į	5			•	1			•	1									
		_	$\overline{}$	_		_	$\overline{}$	_		_		_		_									
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
P0	7	P2	P3	P4	P5	P6	Ь7	P8	P3	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	XS	R0	R1	R2	R3

(3) MW 10kHz steps (DVS=0, SNS=0: AMIN low-speed side selected)

MW RF=1000kHz (IF=+450kHz)

MW VCO=1450kHz

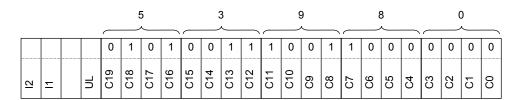

PLL fref=10kHz (R0 to R2=0, R3=1)

1450kHz (MW VCO) ÷10kHz (fref)=145→091 (HEX)

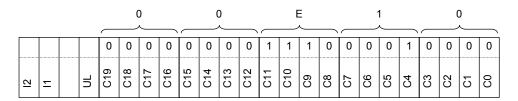
					•	1			(9			()									
				_		_	_	_		_	_	_		_	_								
*	*	*	*	1	0	0	0	1	0	0	1	0	0	0	0	0	0			0	0	0	1
																١							
ြ	~	2	က္က	4	2	စ္	7	ω	စ္ပ	10	7	12	13	4	15	SNS	S/S	븼	S	l	~	Z	ဗ္ဗ
		ш.	ъ	ш.	ш.			ш.	ш.	ш.	ш.	ш.	ш.	ш.	ш.	ဟ			_		ш.	ш.	ш.

IF Counter Structure

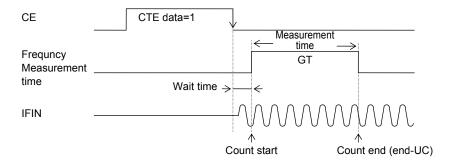
The LC72131K/KMA IF counter is a 20-bit binary counter. The result, i.e., the counter's msb, can be read serially from the DO pin.


OT4	OTO	Measurement time								
GT1	GT0	Measurement time (GT) (ms)	Wait time (twu) (ms)							
0	0	4	3 to 4							
0	1	8	3 to 4							
1	0	32	7 to 8							
1	1	64	7 to 8							

The IF frequency (Fc) is measured by determining how many pulses were input to an IF counter in a specified measurement period, GT.


$$Fc = \frac{C}{GT}$$
 (C=Fc×GT) C: Count value (number of pulses)

IF Counter Frequency Calculation Examples


(1) When the measurement period (GT) is 32ms, the count (C) is 53980 hexadecimal (342400 decimal): IF frequency (Fc) = $342400 \div 32$ ms=10.7MHz

(2) When the measurement period (GT) is 8ms, the count (C) is E10 hexadecimal (3600 decimal): IF frequency (Fc) = $3600 \div 8ms = 450kHz$

IF Counter Operation

Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0. The IF count is started by changing the CTE bit in the serial data from 0 to 1. The serial data is latched by the LC72131K/KMA when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF counter at the end of the measurement period must be read out during the period that CTE is 1. This is because the IF counter is reset when CTE is set to 0.

Note: When operating the IF counter, the control microprocessor must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.

11	IFIN minimum input sensitivity standard f [MHz]											
	IFS	0.4≤f<0.5	0.5≤f<8	8≤f≤12								
	1: Normal mode	40mVrms (0.1 to 3mVrms)	40mVrms	40mVrms (1 to 10mVrms)								
	0: Degradation mode	70mVrms (10 to 15mVrms)	70mVrms	70mVrms (30 to 40mVrms)								

Note: Values in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

Unlock Detection Determination Timing

Unlocked state detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

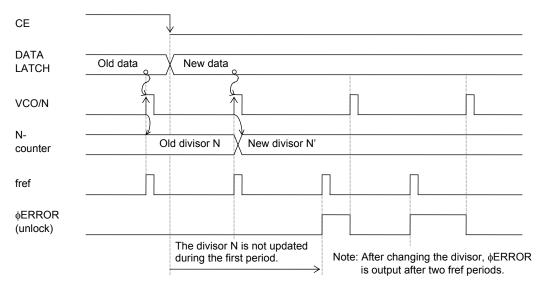


Figure 1 Unlocked State Detection Timing

For example, if fref is 1kHz, i.e., the period is 1ms, after changing the divisor N, the system must wait at least 2ms before checking for the unlocked state.

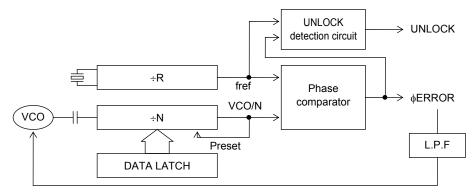
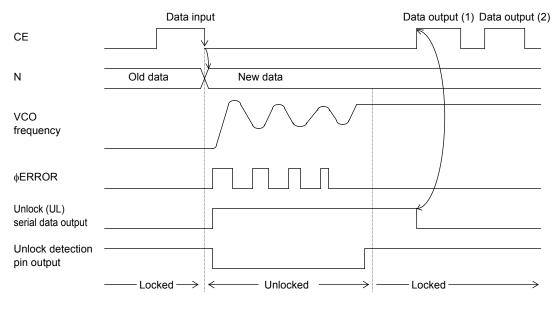
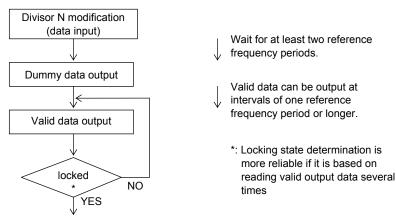


Figure 2 Circuit Structure

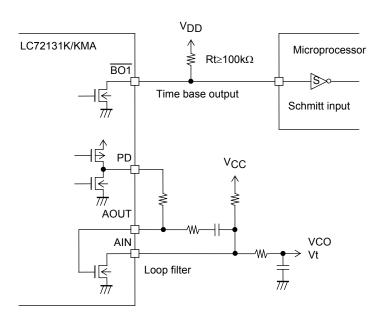



Figure 3

Unlocked State Data Output Using Serial Data Output

In the LC72131K/KMA, once an unlocked state occurs, the unlocked state serial data (UL) will not be reset until a data input (or output) operation is performed. At the data output (1) point in Figure 3, although the VCO frequency has stabilized (locked), since no data output has been performed since the divisor N was changed the unlocked state data remains in the unlocked state. As a result, even though the frequency has stabilized (locked), the system remains (from the standpoint of the data) in the unlocked state.

Therefore, the unlocked state data acquired at data output (1), which occurs immediately after the divisor N was changed, should be treated as a dummy data output and ignored. The second data output (data output (2)) and following outputs are valid data.


< Locked State Determination Flowchart Example>

Directly Outputting Unlocked State Data from the DO Pin (Set by the DO pin control data)
Since the unlocked state (high=locked, low=unlocked) is output directly from the DO pin, the dummy data processing described in section 3 above is not required. After changing the divisor N, the locking state can be checked after waiting at least two reference frequency periods.

Clock Time Base Usage Notes

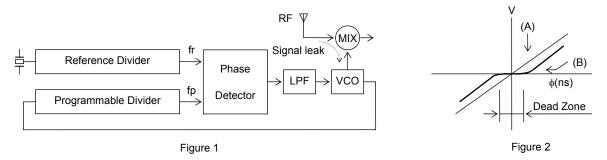
The pull-up resistor used on the clock time base output pin $(\overline{BO1})$ should be at least $100k\Omega$. This is to prevent degrading the VCO C/N characteristics when a loop filter is formed using the built-in low-pass filter transistor. Since the clock time base output pin and the low-pass filter have a common ground internal to the IC, it is necessary to minimize the time base output pin current fluctuations and to suppress their influence on the low-pass filter. Also, to prevent chattering we recommend using a Schmitt input at the controller (microprocessor) that receives this signal.

Other Items

[1] Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	0s
0	1	DZB	ON/ON	-0s
1	0	DZC	OFF/OFF	+0s
1	1	DZD	OFF/OFF	++0s

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.


The following problems may occur in the ON/ON state.

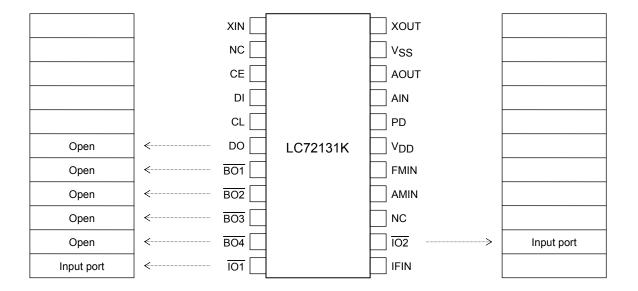
- (1) Side band generation due to reference frequency leakage
- (2) Side band generation due to both the correction pulse envelope and low frequency leakage Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C/N ratio can be difficult. On the other hand, although it is easy to acquire a high C/N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/N ratio in excess of 90 to 100dB, or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

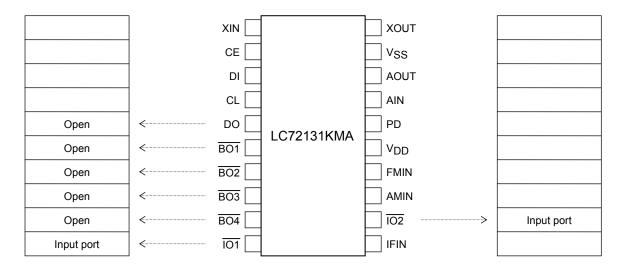
The phase comparator compares fp to a reference frequency (fr) as shown in Figure 1. Although the characteristics of this circuit (see Figure 2) are such that the output voltage is proportional to the phase difference \emptyset (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S/N ratio.

However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularlypriced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

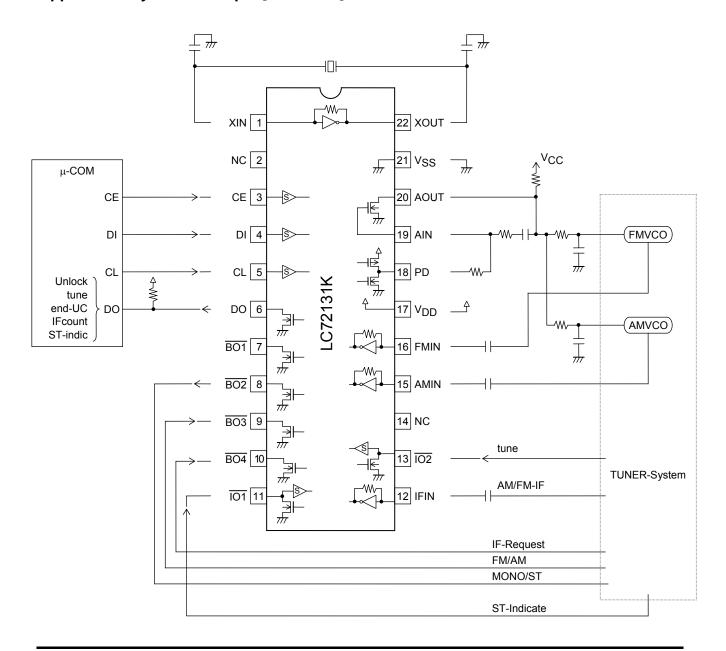
[2] Notes on the FMIN, AMIN, and IFIN Pins

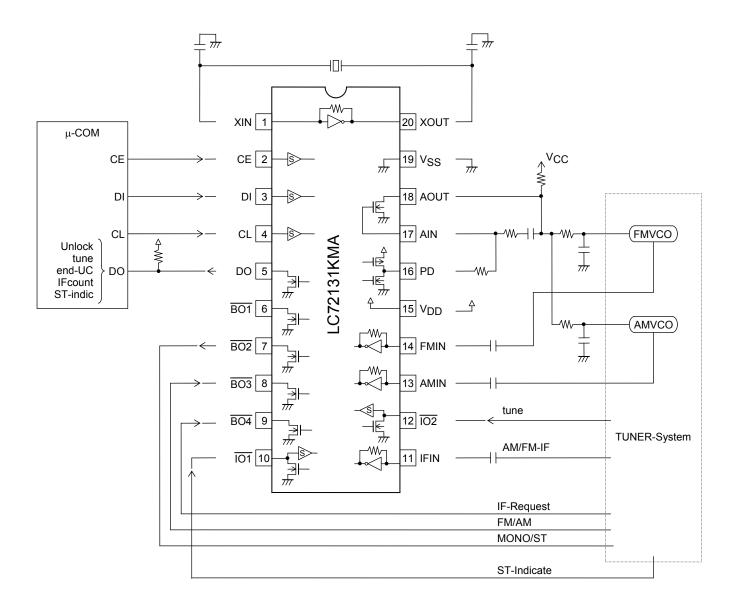

Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100pF is desirable. In particular, if a capacitance of 1000pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.

[3] Notes on IF Counting—SD must be used in conjunction with the IF counting time
When using IF counting, always implement IF counting by having the microprocessor determine the presence of
the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in
which auto-searches are performed with only IF counting are not recommended, since they can cause false
detection where there is no signal due to overflow from the IF counter buffer.


[4] DO Pin Usage Techniques

In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.


Pin States After the Power ON Reset [LC72131K]


Pin States After the Power ON Reset [LC72131KMA]

Application System Example [LC72131K]

Application System Example [LC72131KMA]

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co..Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of October, 2012. Specifications and information herein are subject to change without notice.