

SANYO Semiconductors

DATA SHEET

An ON Semiconductor Company

CMOSIC LCD Display Driver

Overview

The LC75844M is a 1/4 duty general-purpose LCD driver that can be used for frequency display in electronic tuners under the control of a microcontroller. The LC75844M can drive an LCD with up to 88 segments directly. The LC75844M can also control up to 4 general-purpose output ports. Since the LC75844M uses separate power supply systems for the LCD drive block and the logic block, the LCD driver block power-supply voltage can be set to any voltage in the range 2.7 to 6.0 volts, regardless of the logic block power-supply voltage.

Application

• Car, Home frequency display

Features

- Support for 1/4 duty 1/2 bias or 1/4 duty 1/3 bias drive of up to 88 segments under serial data control.
- Serial data input supports CCB format communication with the system controller.
- Serial data control of the power-saving mode based backup function and all the segments forced off function
- Serial data control of switching between the segment output port and the general-purpose output port functions
- High generality, since display data is displayed directly without decoder intervention.
- Independent V_{LCD} for the LCD driver block (V_{LCD} can be set to any voltage in the range 2.7 to 6.0 volts, regardless of the logic block power-supply voltage.)
- The INH pin can force the display to the off state.
- RC oscillator circuit
 - CCB is a trademark of SANYO Electric Co., Ltd.
 - CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.
 - Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
 - Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LC75844M

Specifications

Absolute Maximum Ratings at Ta = 25°C, $V_{SS} = 0V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum aunah valtaga	V _{DD} max	V _{DD}	-0.3 to +7.0	V
Maximum supply voltage	V _{LCD} max	V _{LCD}	-0.3 to +7.0	V
	V _{IN} 1	CE, CL, DI, INH	-0.3 to +7.0	
Input voltage	V _{IN} 2	OSC	-0.3 to V _{DD} +0.3	V
	V _{IN} 3	V _{LCD} 1, V _{LCD} 2	-0.3 to V _{LCD} +0.3	
Output voltage	V _{OUT} 1	OSC	-0.3 to V _{DD} +0.3	
	V _{OUT} 2	S1 to S22, COM1 to COM4, P1 to P4	-0.3 to V _{LCD} +0.3	V
	I _{OUT} 1	S1 to S22	300	μΑ
Output current	I _{OUT} 2	COM1 to COM4	3	A
	I _{OUT} 3	P1 to P4	5	mA
Allowable power dissipation	Pd max	Ta = 85°C	100	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at $Ta = \text{-}40 \text{ to } \text{+}85^{\circ}C, \, V_{SS} = 0V$

Danamatan	O:hl	Conditions		Ratings			1.1	
Parameter	Symbol Conditions		15	min	typ	max	Unit	
Cumply valtage	V _{DD}	V _{DD}		2.7		6.0	V	
Supply voltage	V _{LCD}	V _{LCD}		2.7		6.0	V	
Input voltage	V _{LCD} 1	V _{LCD} 1			2/3V _{LCD}	V_{LCD}	V	
Input voltage	V _{LCD} 2	V _{LCD} 2			1/3V _{LCD}	V _{LCD}	V	
Input high-level voltage	V _{IH}	CE, CL, DI, INH		0.8V _{DD}		6.0	V	
Input low-level voltage	V _{IL}	CE, CL, DI, INH		0		0.2V _{DD}	V	
Recommended external resistor	Rosc	OSC			43		kΩ	
Recommended external capacitor	Cosc	OSC			680		pF	
Oscillation guaranteed range	fosc	OSC		25	50	100	kHz	
Data setup time	tds	CL, DI	[Figure 2]	160			ns	
Data hold time	tdh	CL, DI	[Figure 2]	160			ns	
CE wait time	tcp	CE, CL	[Figure 2]	160			ns	
CE setup time	tcs	CE, CL	[Figure 2]	160			ns	
CE hold time	tch	CE, CL	[Figure 2]	160			ns	
High-level clock pulse width	tφH	CL	[Figure 2]	160			ns	
Low-level clock pulse width	tφL	CL	[Figure 2]	160			ns	
Rise time	tr	CE, CL, DI	[Figure 2]		160		ns	
Fall time	tf	CE, CL, DI	[Figure 2]		160		ns	
INH switching time	tc	ĪNH, CE	[Figure 3]	10			μs	

LC75844M

Electrical Characteristics at Allowable Operating Ranges

B	0 1 1	5:	Canaditia na		Ratings		I I = it
Parameter	Symbol	Pin	Conditions	min	typ	max	Unit
Hysteresis width	٧H	CE, CL, DI, INH			0.1V _{DD}		V
Input high-level current	liH	CE, CL, DI, INH	V _I = 6.0V			5.0	μА
Input low-level current	I _{IL}	CE, CL, DI, INH	V _I = 0V	-5.0			μА
Output high-level voltage	V _{OH} 1	S1 to S22	I _O = -20μA	V _{LCD} -0.9			
	V _{OH} ²	COM1 to COM4	I _O = -100μA	V _{LCD} -0.9			V
	V _{OH} 3	P1 to P4	I _O = -1mA	V _{LCD} -0.9			
Output low-level voltage	V _{OL} 1	S1 to S22	ΙΟ = 20μΑ			0.9	
	V _{OL} 2	COM1 to COM4	I _O = 100μA			0.9	V
	V _{OL} 3	P1 to P4	I _O = 1mA			0.9	
Output middle-level voltage *1	V _{MID} 1	COM1 to COM4	1/2 bias, I _O = ±100μA	1/2V _{LCD} -0.9		1/2V _{LCD} +0.9	
	V _{MID} 2	S1 to S22	1/3 bias, I _O = ±20μA	2/3V _{LCD} -0.9		2/3V _{LCD} +0.9	
	V _{MID} 3	S1 to S22	1/3 bias, I _O = ±20μA	1/3V _{LCD} -0.9		1/3V _{LCD} +0.9	V
	V _{MID} 4	COM1 to COM4	1/3 bias, I _O = ±100μA	2/3V _{LCD} -0.9		2/3V _{LCD} +0.9	
	V _{MID} 5	COM1 to COM4	1/3 bias, $I_{O} = \pm 100 \mu A$	1/3V _{LCD} -0.9		1/3V _{LCD} +0.9	
Oscillator frequency	fosc	OSC	Rosc = $43k\Omega$ Cosc = $680pF$	40	50	60	kHz
Supply current	I _{DD} 1	V_{DD}	Power saving mode			5	
	I _{DD} 2	V _{DD}	V _{DD} = 6.0V, output open, fosc = 50kHz		230	460	
	I _{LCD} 1	V _{LCD}	Power saving mode			5	μΑ
	I _{LCD} 2	V _{LCD}	V _{LCD} = 6.0V, output open, 1/2 bias, fosc = 50kHz		100	200	μΛ
	I _{LCD} 3	V _{LCD}	V _{LCD} = 6.0V, output open, 1/3 bias, fosc = 50kHz		60	120	

Note: *1 Excluding the bias voltage generation divider resistors built into VLCD1, VLCD2. (See Figure 1.)

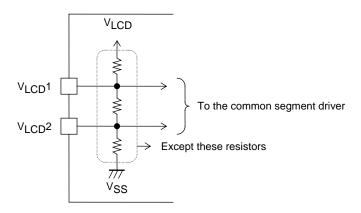
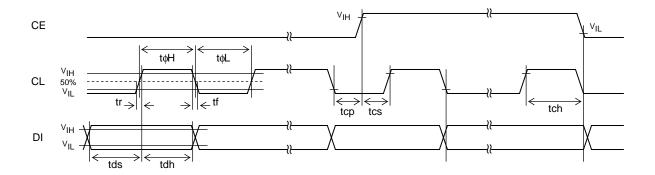



Figure 1

1. When CL is stopped at the low level

2. When CL is stopped at the high level

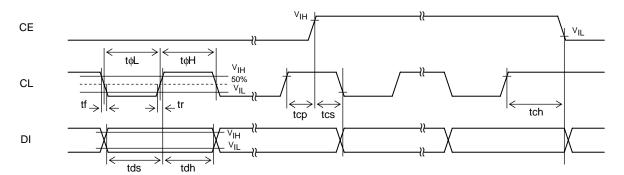
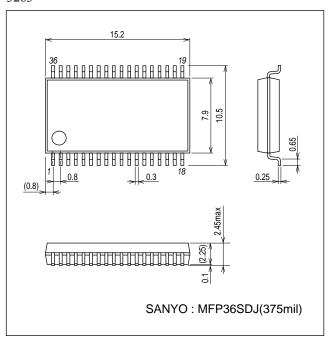
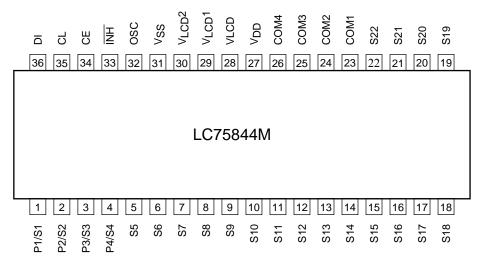
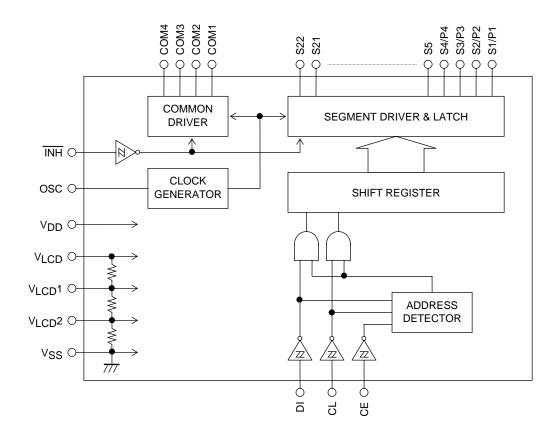



Figure 2


Package Dimensions

unit: mm (typ)

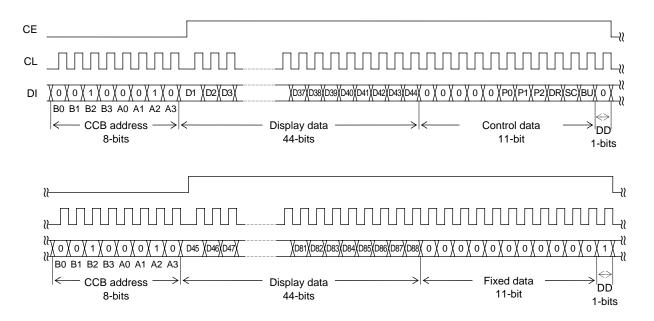
3263



Pin Assignment

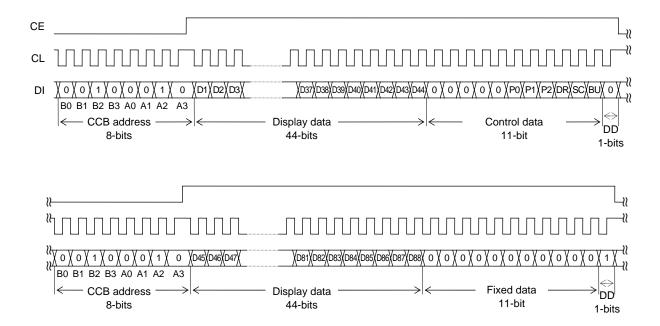
Top view

Block Diagram


LC75844M

Pin Functions

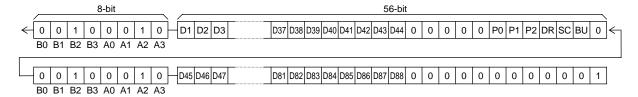
Symbol	Pin No.	Function	Active	I/O	Handling when unused
S1/P1 to S4/P4 S5 to S22	1 to 4 5 to 22	Segment outputs for displaying the display data transferred by serial data input. The S1/P1 to S4/P4 pins can be used as general-purpose output ports under serial data control.	-	0	OPEN
COM1 to COM4	23 to 26	Common driver outputs The frame frequency (fo) is given by: fo=(fosc/512) Hz.	-	0	OPEN
osc	32	Oscillator pin, which, together with externally connected resistor and capacitor, makes up an oscillator circuit.	-	I/O	V _{DD}
CE CL DI	34 35 36	Serial data transfer input pin to be connected to the controller. CE: Chip enable CL: Synchronization clock DI: Transfer data	H	1 1 1	GND
ĪNĦ	33	Display off input pin • INH="L" (VSS) OFF S1/P1 to S4/P4="L" (VSS) (Fixed to "L" after forced selection of segment output port.) S5 to S22="L" (VSS) COM1 to COM4="L" (VSS) • INH="H" (VDD) ON Note that the serial data can be transferred when OFF.	L	ı	GND
V _{LCD} 1	29	Used for applying the LCD driver 2/3 bias voltage externally. Must be connected to V _{LCD} 2 when a 1/2 bias scheme is used.	-	I	OPEN
V _{LCD} 2	30	Used for applying the LCD driver 1/3 bias voltage externally. Must be connected to V _{LCD} 1 when a 1/2 bias scheme is used.	-	I	OPEN
V _{DD}	27	Logic block power supply pin to provide a voltage between 2.7V to 6.0V.	-	-	-
V _{LCD}	28	LCD driver power supply pin to provide a voltage between 2.7V to 6.0V.	-	-	
V _{SS}	31	Power supply pin to connect to ground.	-	-	-


Serial Data Transfer Form

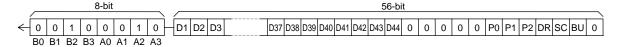
(1) When CL is stopped at the low level

Note) DD ····· Direction data

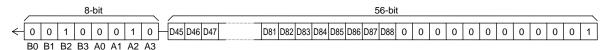
(2) When CL is stopped at the low level



Note) DD Direction data


- CCB address ·· "44H"
- D1 to D88 ····· Display data
- P0 to P2······ Segment output port / general-purpose output port switching control data
- DR ····· 1/2 bias driver / 1/3 bias driver switching control data
- SC ····· Segment ON, OFF control data
- BU Normal mode, power save mode control data

Example of Serial Data Transfer


• When used with 45 segments or more Serial data must be transferred all 112-bit.

• When fewer than 45 segments are used, only 56-bits of serial data need to be sent. However, the display data D1 to D44 and the control data must be sent.

Note) When fewer than 45 segments are used, transfers such as that shown in the figure below cannot be used.

Control Data Description

(1) P0 to P2 ···· Segment output port/General-purpose output port switching control data This control data switching output S1/P1 to S4/P4 segment output port and general-purpose output port.

			, 1			1 1
	Control data	a		Output	oin state	
P0	P1	P2	S1/P1	S2/P2	S3/P3	S4/P4
0	0	0	S1	S2	S3	S4
0	0	1	P1	S2	S3	S4
0	1	0	P1	P2	S3	S4
0	1	1	P1	P2	P3	S4
1	0	0	P1	P2	P3	P4

Note) Sn (n=1 to 4): Segment output port Pn (n=1 to 4): General-purpose output port

The following shows the correspondence between output pins and display data when the general-purpose output port is selected.

Output pin	Correspondence display data
S1/P1	D1
S2/P2	D5
S3/P3	D9
S4/P4	D13

For example, if output pin S4/P4 is for the general-purpose output port, output pin S4/P4 outputs high and low-level when display data D13="1" and D13="0", respectively.

(2) DR ···· 1/2 bias drive, 1/3 bias driver switching control data

This control data switching LCD 1/2 bias driver and 1/3 bias driver.

DR	Driver method
0	1/3 bias driver
1	1/2 bias driver

(3) SC ···· Segment ON, OFF control data

This control data controls segment ON and OFF.

SC	Display state
0	ON
1	OFF

Note: that the OFF state with SC=[1] corresponds to the OFF state due to output of the display OFF waveform from the segment output pin.

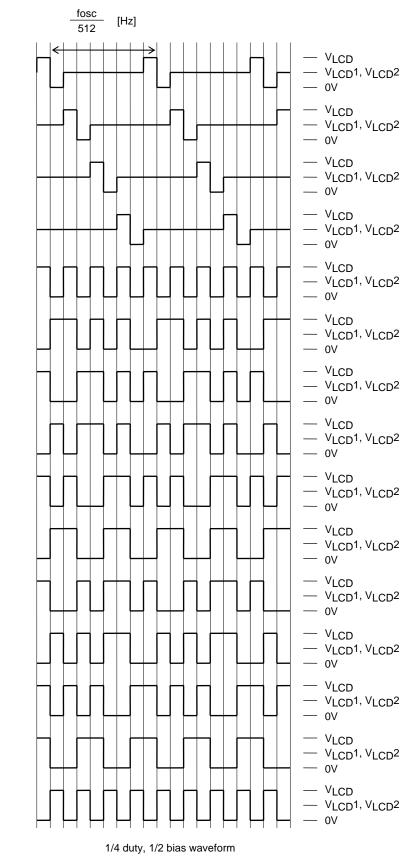
(4) BU Normal mode, Power save mode control data

This control data controls normal mode and power save mode.

BU	Mode
0	Normal mode
1	Power save mode (oscillation on the OSC pin stops and the common, segment output pins go low, However, output pins S1/P1 to S4/P4 can be used as the general-purpose output port by the use of control data P0 to P2.)

Display data and output pin correspondence

Display data a	Display data and output pin correspondence						
Output pin	COM1	COM2	COM3	COM4			
S1/P1	D1	D2	D3	D4			
S2/P2	D5	D6	D7	D8			
S3/P3	D9	D10	D11	D12			
S4/P4	D13	D14	D15	D16			
S5	D17	D18	D19	D20			
S6	D21	D22	D23	D24			
S7	D25	D26	D27	D28			
S8	D29	D30	D31	D32			
S9	D33	D34	D35	D36			
S10	D37	D38	D39	D40			
S11	D41	D42	D43	D44			


Output pin	COM1	COM2	COM3	COM4
S12	D45	D46	D47	D48
S13	D49	D50	D51	D52
S14	D53	D54	D55	D56
S15	D57	D58	D59	D60
S16	D61	D62	D63	D64
S17	D65	D66	D67	D68
S18	D69	D70	D71	D72
S19	D73	D74	D75	D76
S20	D77	D78	D79	D80
S21	D81	D82	D83	D84
S22	D85	D86	D87	D88

Note: Output pins S1/P1 to S4/P4 are for segment output port selection.

For example, the data to output pin correspondence for the output pin S11 is as follows.

	Display data		1	
D41	D42	D43	D44	Output pin (S11) state
0	0	0	0	LCD segments for COM1, COM2, COM3 and COM4 OFF
0	0	0	1	LCD segment for COM4 ON
0	0	1	0	LCD segment for COM3 ON
0	0	1	1	LCD segments for COM3 and COM4 ON
0	1	0	0	LCD segment for COM2 ON
0	1	0	1	LCD segments for COM2 and COM4 ON
0	1	1	0	LCD segments for COM2 and COM3 ON
0	1	1	1	LCD segments for COM2, COM3 and 4 ON
1	0	0	0	LCD segment for COM1 ON
1	0	0	1	LCD segments for COM1 and COM4 ON
1	0	1	0	LCD segments for COM1 and COM3 ON
1	0	1	1	LCD segments for COM1, 3 and COM4 ON
1	1	0	0	LCD segments for COM1 and COM2 ON
1	1	0	1	LCD segments for COM1, COM2 and COM4 ON
1	1	1	0	LCD segments for COM1, COM2 and COM3 ON
1	1	1	1	LCD segments for COM1, COM2, COM3 and COM4 ON

Output Waveforms (1/4-Duty 1/2-Bias ON System)

COM1

COM₂

сомз

COM4

LCD driver output when LCD segments for COM1, COM2, COM3 and COM4 are off.

LCD driver output when only LCD segment for COM1 is on.

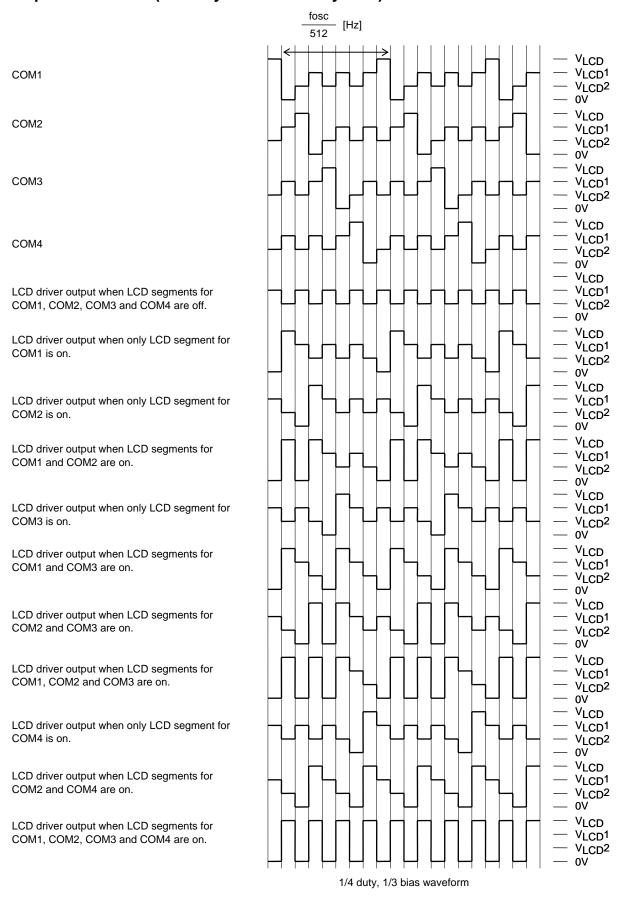
LCD driver output when only LCD segment for COM2 is on.

LCD driver output when LCD segments for COM1 and COM2 are on.

LCD driver output when only LCD segment for COM3 is on.

LCD driver output when LCD segments for COM1 and COM3 are on.

LCD driver output when LCD segments for COM2 and COM3 are on.


LCD driver output when LCD segments for COM1, COM2 and COM3 are on.

LCD driver output when only LCD segment for COM4 is on.

LCD driver output when LCD segments for COM2 and COM4 are on.

LCD driver output when LCD segments for COM1, COM2, COM3 and COM4 are on.

Output Waveforms (1/4-Duty 1/3-Bias ON System)

INH and Display Control

Since the IC internal data (D1 to D88, control data) is undefined immediately after applying power, hold INH low at same time as applying power to turn off the display (S1/P1 to S4/P4, S5 to S22, COM1 to COM4 \cdots VSS level), and serial transfer data from the microprocessor during the period that $\overline{\text{INH}}$ is low.

When the data transfer is complete, set INH high.

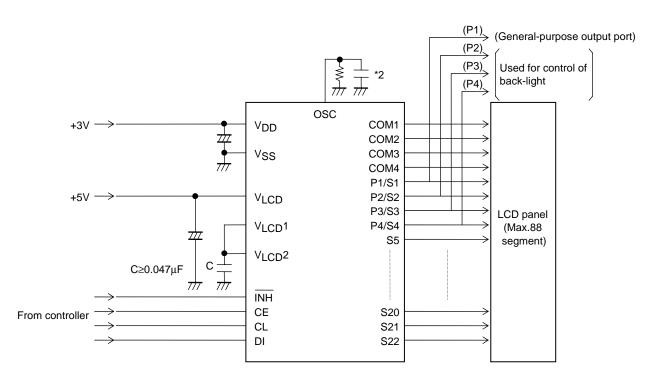
This procedure will avoid displaying meaningless patterns at startup. (See Figure 3)

Power Sequence

Be sure to observe the following sequence for power ON/OFF (See Figure 3)

Power ON: Logic block power (V_{DD}) ON → LCD driver power (V_{LCD}) ON
 Power OFF: LCD driver power (V_{LCD}) OFF → Logic block power (V_{DD}) OFF

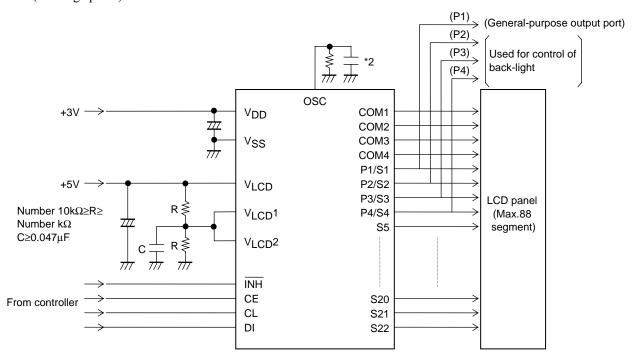
When the logic block power (V_{DD}) and LCD driver power (V_{LCD}) are common, both power supplies can be turned ON/OFF simultaneously.



Note on Controller-used Display Data Transfer

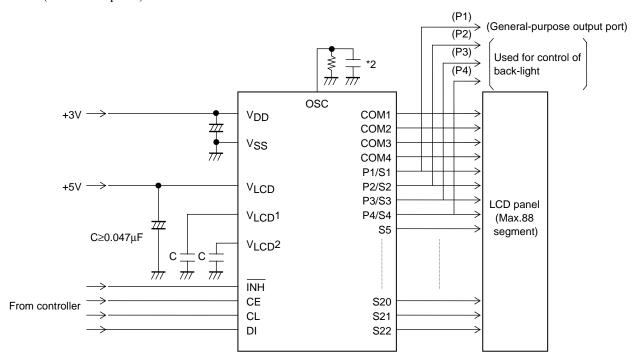
Since the LC75844M is such that display data (D1 to D88) is transferred in 4 times, it is recommended to transfer display data within 30 [ms] in terms of display quality.

Sample Application Circuit 1

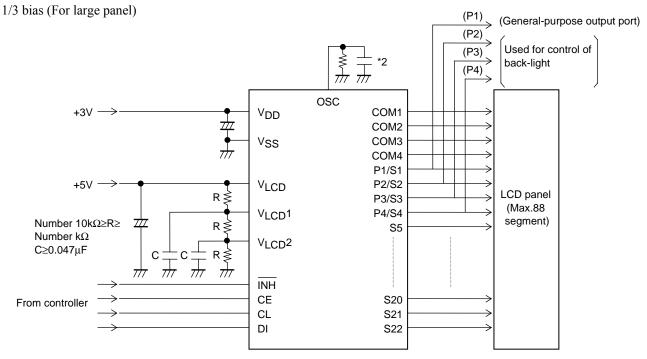

1/2 Bias (For normal panel)

*2 If a capacitor other than the external capacitor Cosc=680 [pF] recommended is to be used, it is recommended to used a capacitor of 220 to 2200 [pF].

Sample Application Circuit 2


1/2 bias (For large panel)

^{*2} If a capacitor other than the external capacitor Cosc=680 [pF] recommended is to be used, it is recommended to used a capacitor of 220 to 2200 [pF].


Sample Application Circuit 3

1/3 bias (For normal panel)

*2 If a capacitor other than the external capacitor Cosc=680 [pF] recommended is to be used, it is recommended to used a capacitor of 220 to 2200 [pF].

Sample Application Circuit 4

*2 If a capacitor other than the external capacitor Cosc=680 [pF] recommended is to be used, it is recommended to used a capacitor of 220 to 2200 [pF].

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of August, 2008. Specifications and information herein are subject to change without notice.