

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LC87F2932A — Secondary Composition of the Compositi

Overview

The SANYO LC87F2932A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 83.3ns, integrates on a single chip a number of hardware features such as 32K-byte flash ROM (onboard programmable), 2048-byte RAM, an on-chip debugger, sophisticated 16-bit timers/counters (may be divided into 8-bit timers), a 16-bit timer/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), four 8-bit timers with a prescaler, a base timer serving as a time-of-day clock, day and time counter, a high-speed clock counter, a synchronous SIO interface (with automatic block transmission/reception capabilities), an asynchronous/synchronous SIO interface, a UART interface (full duplex), an 8-bit 13-channel AD converter, two 12-bit PWM channels, a system clock frequency divider, frequency variable RC oscillation circuit, and a 26-source 10-vector interrupt feature.

Features

- ■Flash ROM
 - Capable of on-board-programming with wide range, 3.0 to 5.5V, of voltage source.
 - Block-erasable in 128-byte units
 - Writable in 2-byte units
 - 32768×8 bits

\blacksquare RAM

• 2048×9 bits

■Minimum Bus Cycle

83.3ns (12MHz)
 125ns (8MHz)
 250ns (4MHz)
 VDD=3.0 to 5.5V
 VDD=2.5 to 5.5V
 VDD=2.2 to 5.5V

Note: The bus cycle time here refers to the ROM read speed.

- * This product is licensed from Silicon Storage Technology, Inc. (USA), and manufactured and sold by SANYO Semiconductor Co., Ltd.
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd.

www.semiconductor-sanyo.com/network

■Minimum Instruction Cycle Time

250ns (12MHz)
 375ns (8MHz)
 750ns (4MHz)
 VDD=3.0 to 5.5V
 VDD=2.5 to 5.5V
 VDD=2.2 to 5.5V

■Ports

• Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1-bit units 59 (P0n, P1n, P2n, P30 to P33, P70 to P73, P80 to P86, PBn, PCn, PWM2, PWM3, CF2, XT2)

(Ports P30 to P33 are available in FLGA68K(6.0×6.0) package only.)

Normal withstand voltage input port
 Reset pins
 2 (<u>CF1</u>, XT1)
 1 (<u>RES</u>)

• Power pins 6 (VSS1 to 3, VDD1 to 3)

■Timers

• Timer 0: 16-bit timer/counter with two capture registers.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture register) × 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture register)

Mode 3: 16-bit counter (with two 16-bit capture register)

• Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs)

+ 8-bit timer/counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM.)

- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes

■Day and Time Counter

- 1) With a base timer, it can be used as 65535days + 23hours + 59minutes + 59seconds counter.
- 2) Interrupts are programmable in 4 different time schemes (day, hour, minute or second).

■High-speed Clock Counter

- 1) Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz)
- 2) Can generate output real-time

■SIO

- SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle=4/3 tCYC)
 - 3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1-bit units, suspension and resumption of data transmission possible in 1-byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8-data bits, 1-stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8-data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8-data bits, stop detect)

■UART

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator

■AD Converter: 8 bits × 13 channels

■PWM: Multifrequency 12-bit PWM × 2 channels

- ■Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)
 - Noise rejection function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)
- ■Watchdog Timer
 - External RC watchdog timer
 - Interrupt and reset signals selectable
- ■Clock Output Function
 - 1) Outputs clock with a frequency 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock of the system clock
 - 2) Outputs clock of the subclock

■Interrupts

- 26 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/INT5/ BT0/BT1/DHMSC
5	00023H	H or L	T0H/INT6
6	0002BH	H or L	T1L/T1H/INT7
7	00033H	H or L	SIO0/UART1 receive
8	0003BH	H or L	SIO1/UART1 transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/T4/T5/PWM2, PWM3

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- IFLG (List of interrupt source flag function)
 - 1) Shows a list of interrupt source flags that caused a branching to a particular vector address (shown in the table above).
- ■Subroutine Stack Levels: 1024 levels (the stack is allocated in RAM)
- ■High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
16 bits ÷ 8 bits
16 bits ÷ 16 bits
17 tCYC execution time
18 tCYC execution time
19 tCYC execution time
10 tCYC execution time
10 tCYC execution time
10 tCYC execution time
10 tCYC execution time
11 tCYC execution time
12 tCYC execution time
13 tCYC execution time
14 tCYC execution time
15 tCYC execution time
16 tCYC execution time
17 tCYC execution time
18 tCYC execution time
19 tCYC execution time
10 tCYC execution time

■Oscillation Circuits

• RC oscillation circuit (internal): For system clock

• CF oscillation circuit: For system clock, with internal Rf

• Crystal oscillation circuit: For low-speed system clock, with internal Rf

- Frequency variable RC oscillation circuit (internal): For system clock
 - 1) Adjustable in $\pm 4\%$ (typ) step from a selected center frequency.
 - 2) Measures oscillation clock using a input signal from XT1 as a reference.

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, and 76.8μs (at a main clock rate of 10MHz).

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, X'tal, and frequency variable RC oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4, INT5, INT6, or INT7
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The CF, RC, and frequency variable RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are six ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4, INT5, INT6, or INT7 * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0
 - (5) Having an interrupt source established in the base timer circuit
 - (6) Having an interrupt source established in the day and time counter circuit

■On-chip Debugger

• Supports software debugging with the IC mounted on the target board (LC87D2932A). LC87F2932A has an On-chip debugger but its function is limited.

■Package Form

• QIP64E (14×14): Lead-free type • TQFP64J (7×7): Lead-free type • FLGA68K (6.0×6.0): Lead-free type • FLGA64 (5.0×5.0): Lead-free type

■Development Tools

• On-chip debugger: TCB87- TypeB + LC87D2932A

■Programming Boards

Package	Programming boards
QIP64E (14×14)	W87F50256Q
TQFP64J (7×7)	W87F58256TQ7
FLGA68K (6.0×6.0)	W87F58256FL6 * This board is Built To Order. It may take about a month to deliver.
FLGA64 (5.0×5.0)	W87F59256FL5 * This board is Built To Order. It may take about a month to deliver.

■Flash ROM Programmer

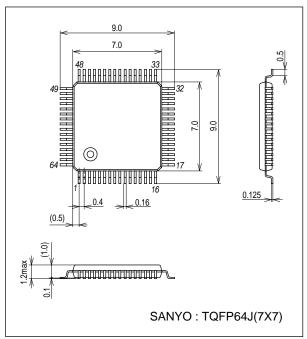
Make	r	Model	Supported version	Device	
Flash Support Group, Inc. (FSG)	Single Programmer	AF9708 AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)	Rev 03.04 or later	LC87F2932A	
Flash Support Group, Inc. (FSG)		AF9101/AF9103(Main body) (FSG models)			
+ SANYO (Note 1)	In-circuit Programmer	SIB87(Inter Face Driver) (SANYO model)	(Note 2)	LC87F2932A	
CANIVO	Single/Gang Programmer	SKK/SKK Type B (SANYO FWS)	Application Version 1.04 or later	1.00750004	
SANYO	In-circuit/Gang Programmer	SKK-DBG Type B (SANYO FWS)	Chip Data Version 2.15 or later	LC87F2924	

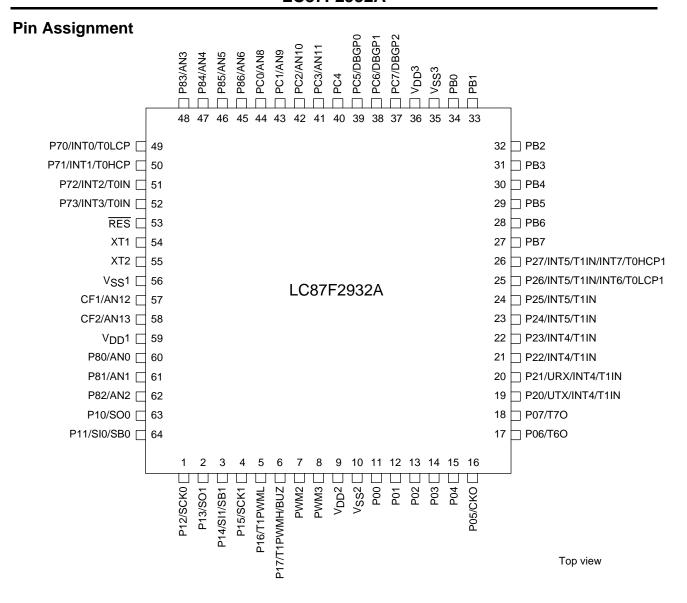
Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from SANYO (SIB87) together can give a PC-less, standalone on-board-programming capabilities.

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or SANYO for the information.

Package Dimensions

unit: mm (typ)

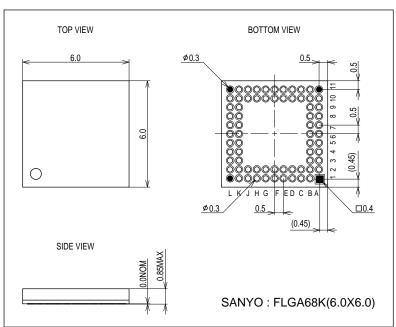

3159A



Package Dimensions

unit: mm (typ)

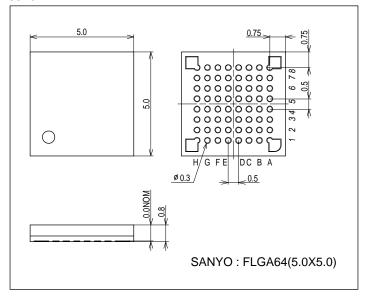
3289

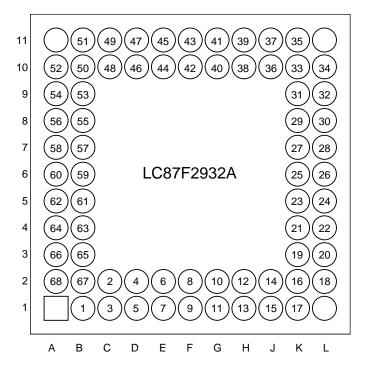

Note: Port P30, p31, p32, p33 are not available in the above package.

SANYO: QIP64E(14×14) "Lead-free Type" SANYO: TQFP64J(7×7) "Lead-free Type"

Package Dimensions

unit: mm (typ)


3326

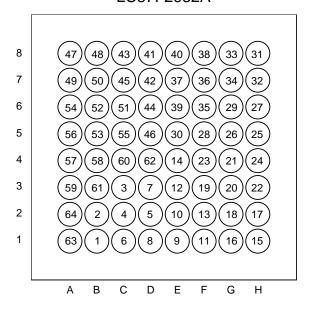

Package Dimensions

unit: mm (typ)

3328

Pin Assignments

Top view

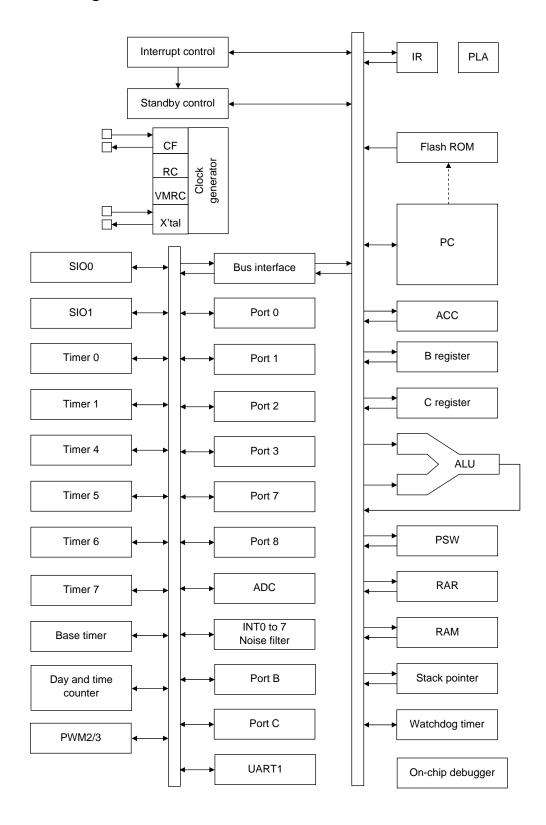

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	P12/SCK0	18	P06/T6O	35	PB1	52	P70/INT0/T0LCP
2	P13/SO1	19	P07/T7O	36	PB0	53	P71/INT1/T0HCP
3	P14/SI1/SB1	20	P20/UTX/INT4/T1IN	37	V _{SS} 3	54	P72/INT2/T0IN
4	P15/SCK1	21	P21/URX/INT4/T1IN	38	V _{DD} 3	55	P73/INT3/T0IN
5	P16/T1PWML	22	P22/INT4/T1IN	39	PC7/DBGP2	56	RES
6	P17/T1PWMH/BUZ	23	P23/INT4/T1IN	40	PC6/DBGP1	57	XT1
7	PWM2	24	P24/INT5/T1IN	41	PC5/DBGP0	58	XT2
8	PWM3	25	P25/INT5/T1IN	42	PC4	59	V _{SS} 1
9	V _{DD} 2	26	P26/INT5/T1IN/INT6/TOLCP1	43	PC3/AN11	60	CF1/AN12
10	V _{SS} 2	27	P27/INT5/T1IN/INT7/T0HCP1	44	PC2/AN10	61	CF2/AN13
11	P00	28	PB7	45	PC1/AN9	62	V _{DD} 1
12	P01	29	PB6	46	PC0/AN8	63	P80/AN0
13	P02	30	PB5	47	P86/AN6	64	P81/AN1
14	P03	31	PB4	48	P85/AN5	65	P82/AN2
15	P04	32	PB3	49	P84/AN4	66	P10/S00
16	P05/CKO	33	PB2	50	P83/AN3	67	P11/SI0/SB0
17	P30	34	P31	51	P32	68	P33

Note: A1, A11, L1, L11 are dummy terminals for the package.

These terminals need to be bonded with foot pattern for the secure bonding of the package.

SANYO: FLGA68K(6.0 × 6.0) "Lead-free Type"

LC87F2932A


Top view

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	P12/SCK0	17	P06/T6O	33	PB1	49	P70/INT0/T0LCP
2	P13/SO1	18	P07/T7O	34	PB0	50	P71/INT1/T0HCP
3	P14/SI1/SB1	19	P20/UTX/INT4/T1IN	35	V _{SS} 3	51	P72/INT2/T0IN
4	P15/SCK1	20	P21/URX/INT4/T1IN	36	V _{DD} 3	52	P73/INT3/T0IN
5	P16/T1PWML	21	P22/INT4/T1IN	37	PC7/DBGP2	53	RES
6	P17/T1PWMH/BUZ	22	P23/INT4/T1IN	38	PC6/DBGP1	54	XT1
7	PWM2	23	P24/INT5/T1IN	39	PC5/DBGP0	55	XT2
8	PWM3	24	P25/INT5/T1IN	40	PC4	56	V _{SS} 1
9	V _{DD} 2	25	P26/INT5/T1IN/INT6/T0LCP1	41	PC3/AN11	57	CF1/AN12
10	V _{SS} 2	26	P27/INT5/T1IN/INT7/T0HCP1	42	PC2/AN10	58	CF2/AN13
11	P00	27	PB7	43	PC1/AN9	59	V _{DD} 1
12	P01	28	PB6	44	PC0/AN8	60	P80/AN0
13	P02	29	PB5	45	P86/AN6	61	P81/AN1
14	P03	30	PB4	46	P85/AN5	62	P82/AN2
15	P04	31	PB3	47	P84/AN4	63	P10/SO0
16	P05/CKO	32	PB2	48	P83/AN3	64	P11/SI0/SB0

Note: Port P30, p31, p32, p33 are not available in the above package.

SANYO: FLGA64(5.0×5.0) "Lead-free Type"

System Block Diagram

Pin Description

Pin Name	I/O				Description			Option
V _{SS} 1 V _{SS} 2 V _{SS} 3	-	-power supply pin						No
V _{DD} 1 V _{DD} 2 V _{DD} 3	-	+power supply pi	1					No
Port 0	I/O	• 8-bit I/O port						Yes
P00 to P07		I/O specifiable ii Pull-up resistors HOLD reset inp Port 0 interrupt Shared pins P05: Clock outp P06: Timer 6 to P07: Timer 7 to	can be turne ut nput ut (system clo ggle output			ck)		130
Port 1	I/O	• 8-bit I/O port	1					Yes
P10 to P17		I/O specifiable i Pull-up resistors Shared pins P10: SIO0 data P11: SIO0 data P12: SIO0 clock P13: SIO1 data P14: SIO1 data P15: SIO1 clock P16: Timer 1PV P17: Timer 1PV	can be turned output input/bus I/O output input/bus I/O output input/bus I/O		1-bit units.			
Port 2	I/O	• 8-bit I/O port	TWII T Gatpabb	sopor output				Yes
P20 to P27		I/O specifiable i Pull-up resistors Shared pins P20: UART tran P21: UART record P26: INT6 input P27: INT7 input p20 to P23: INT tim P24 to P27: INT	can be turne smit sive /HOLD reset i / HOLD reset 4 input/HOLD er 0H capture 5 input/HOLD er 0H capture	nput/timer 0L of input/timer 0H of reset input/tin input of reset input/tin	capture 1 input capture 1 input ner 1 event inpu	ut/timer 0L cap	·	
Port 3	I/O	• 4-bit I/O port						Yes
P30 to P33	-	(These ports are I/O specifiable in Pull-up resistors	n 1-bit units		,, ,	nly.)		

Continued on next page.

Continued from preceding page.

Pin Name	I/O			D	escription			Option	
Port 7	I/O	• 4-bit I/O port						No	
P70 to P73		I/O specifiable in	1-bit units						
		 Pull-up resistors 	can be turned	d on and off in	1-bit units.				
		 Shared pins 							
		P70: INT0 input/	P70: INT0 input/HOLD reset input/timer 0L capture input/watchdog timer output						
		P71: INT1 input/	HOLD reset in	nput/timer 0H c	apture input				
		P72: INT2 input/	HOLD reset in	nput/timer 0 eve	ent input/timer (L capture inpu	t/		
		High speed	clock counte	r input					
		P73: INT3 input	(with noise filt	ter)/timer 0 eve	nt input/timer 0l	H capture input			
		Interrupt acknow	ledge type						
			Diaina	Falling	Rising &	H level	L level		
			Rising	Falling	Falling	n ievei	L level		
		INT0	enable	enable	disable	enable	enable		
		INT1	enable	enable	disable	enable	enable		
		INT2	enable	enable	enable	disable	disable		
		INT3	enable	enable	enable	disable	disable		
					•	•	<u> </u>		
Port 8	I/O	• 7-bit I/O port						No	
P80 to P86	-	I/O specifiable in	1-bit units						
F00 10 F00		Shared pins							
		AD converter inp	out port: ANO	(P80) to AN6 (F	286)				
PWM2	I/O	PWM2 and PWM	-					No	
PWM3	,, ,	General-purpose							
Port B	I/O	8-bit I/O port	, , ,					Yes	
	- "	I/O specifiable in	1-bit units						
PB0 to PB7		Pull-up resistors		d on and off in	1 bit units.				
Port C	I/O	8-bit I/O port						Yes	
PC0 to PC7	- "	I/O specifiable in	1-bit units					100	
PC0 10 PC7		Pull-up resistors		d on and off in	1-bit units				
		Shared pins	oan bo tanno	a 0 aa 0	. 51. 41.11.51				
		AD converter inp	out port: AN8	(PC0) to AN11	(PC3)				
		On-chip debugge	-						
RES	Input	Reset pin	o. po. 220.	0 10 220. 2 (.	0010101			No	
XT1		• 32.768kHz cryst	al agaillatar in	nut nin				No	
A 11	Input	Shared pins	ai uscillatur III	iput piri				INO	
		· '	innut nort						
VTO	1/0	General-purpose		utaut aia				No	
XT2	I/O	• 32.768kHz cryst	ai oscillator o	utput pin				No	
		Shared pins							
054	la a cat	General-purpose						N-	
CF1	Input	Ceramic resonate	ior input pin					No	
		Shared pins							
		General-purpose							
		AD converter inp	· ·						
CF2	I/O	Ceramic resonate	tor output pin					No	
		Shared pins							
		General-purpose							
		AD converter inp	out port: AN13	3					

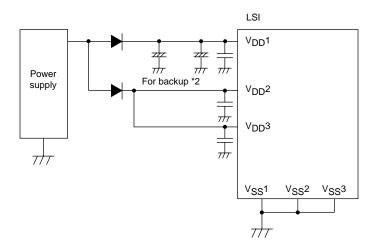
On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 On-chip Debugger Installation Manual"

Recommended Unused Pin Connections

D. (No.	Recommend	ded Unused Pin Connections
Port Name	Board	Software
P00 to P07	Open	Output low
P10 to P17	Open	Output low
P20 to P27	Open	Output low
P30 to P33	Open	Output low
P70 to P73	Open	Output low
P80 to P86	Open	Output low
PWM2,PWM3	Open	Output low
PB0 to PB7	Open	Output low
PC0 to PC6	Open	Output low
PC7	Pulled low with a $100k\Omega$ resistor or less	Output disable
XT1	Pulled low with a $100k\Omega$ resistor or less	-
XT2	Open	Output low
CF1	Pulled low with a $100k\Omega$ resistor or less	-
CF2	Open	Output low

Port Output Types


The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P27	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P30 to P33	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
P80 to P86	-	No	Nch-open drain	No
PWM2, PWM3	-	No	CMOS	No
PB0 to PB7	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
PC0 to PC7	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
XT1	-	No	Input for 32.768kHz crystal oscillator (Input only)	No
XT2	-	No	Output for 32.768kHz crystal oscillator (Nch-open drain when in general-purpose output mode)	No
CF1	-	No	Input for ceramic oscillator (Input only)	No
CF2	-	No	Output for ceramic oscillator (Nch-open drain when in general-purpose output mode)	No

User Option Table

Option Name	Option to be Applied on	Flash-ROM Version	Option Selected in Units of	Option Selection
	D00 t- D07	0	A Lie	CMOS
	P00 to P07	0	1 bit	Nch-open drain
	D40 to D47	0	4 hit	CMOS
	P10 to P17	0	1 bit	Nch-open drain
	P20 to P27	0	A Lie	CMOS
Down output tuno	P20 to P27	O	1 bit	Nch-open drain
Port output type	D20 to D22	0	A Lie	CMOS
	P30 to P33	0	1 bit	Nch-open drain
	DD0 +- DD7	0	A Lie	CMOS
	PB0 to PB7	0	1 bit	Nch-open drain
	P00 / P07		4.1%	CMOS
	PC0 to PC7	0	1 bit	Nch-open drain
Program start		0		00000h
address	-	O	-	07E00h

*1: Connect the IC as shown below to minimize the noise input to the $V_{DD}1$ pin. Be sure to electrically short the $V_{SS}1$, $V_{SS}2$, and $V_{SS}3$ pins.

- *2: The internal memory is sustained by V_{DD}1. If none of V_{DD}2 and V_{DD}3 are backed up, the high level output at the ports are unstable in the HOLD backup mode, allowing through current to flow into the input buffer and thus shortening the backup time.
 - Make sure that the port outputs are held at the low level in the HOLD backup mode.

Absolute Maximum Ratings at $Ta=25^{\circ}C,\ V_{SS}1=V_{SS}2=V_{SS}3=0V$

	Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
	T didiliotoi	Cymbol	Tillyrtomanto		V _{DD} [V]	min	typ	max	unit
	aximum supply tage	V _{DD} max	$V_{DD}1$, $V_{DD}2$, $V_{DD}3$	V _{DD} 1=V _{DD} 2=V _{DD} 3		-0.3		+6.5	
Inp	out voltage	V _I (1)	XT1, CF1			-0.3		V _{DD} +0.3	
	out/output Itage	V _{IO} (1)	Ports 0, 1, 2, 3, 7, 8 Ports B, C PWM2, PWM3, XT2, CF2			-0.3		V _{DD} +0.3	V
	Peak output current	IOPH(1)	Ports 0, 1, 2, 3 Ports B, C	CMOS output select Per 1 applicable pin		-10			
		IOPH(2)	PWM2, PWM3	Per 1 applicable pin		-20			
		IOPH(3)	P71 to P73	Per 1 applicable pin		-5			
	Mean output	IOMH(1)	Ports 0, 1, 2, 3 Ports B, C	CMOS output select Per 1 applicable pin		-7.5			
ren	(Note 1-1)	IOMH(2)	PWM2, PWM3	Per 1 applicable pin		-10			
It cu	,	IOMH(3)	P71 to P73	Per 1 applicable pin		-3			
ntbn	Total output	ΣΙΟΑΗ(1)	P71 to P73, P32	Total of all applicable pins		-10			
High level output current	current	ΣΙΟΑΗ(2)	Port 1, P33 PWM2, PWM3	Total of all applicable pins		-25			
Hig		ΣΙΟΑΗ(3)	Ports 0, 2, P30	Total of all applicable pins		-25			
		ΣΙΟΑΗ(4)	Ports 0, 1, 2, P30, PWM2, PWM3, P33	Total of all applicable pins		-45			
		ΣΙΟΑΗ(5)	Port B, P31	Total of all applicable pins		-25			
		ΣΙΟΑΗ(6)	Port C	Total of all applicable pins		-25			
		ΣΙΟΑΗ(7)	Ports B, C, P31	Total of all applicable pins		-45			
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2, 3, B, C PWM2, PWM3	Per 1 applicable pin				20	
		IOPL(2)	P00, P01	Per 1 applicable pin				30	
		IOPL(3)	Ports 7, 8, XT2, CF2	Per 1 applicable pin				10	mA
	Mean output current (Note 1-1)	IOML(1)	P02 to P07 Ports 1, 2, 3, B, C PWM2, PWM3	Per 1 applicable pin				15	
		IOML(2)	P00, P01	Per 1 applicable pin				20	
rrent		IOML(3)	Ports 7, 8 XT2, CF2	Per 1 applicable pin				7.5	
Low level output cur	Total output current	ΣIOAL(1)	Port 7, P32 P83 to P86, XT2, CF2	Total of all applicable pins				15	
eve		ΣIOAL(2)	P80 to P82	Total of all applicable pins				15	
Low		ΣIOAL(3)	Ports 7, 8, P32 XT2, CF2	Total of all applicable pins				20	
		ΣIOAL(4)	Port 1, P33 PWM2, PWM3	Total of all applicable pins				45	
		ΣIOAL(5)	Ports 0, 2, P30	Total of all applicable pins				45	
		ΣIOAL(6)	Ports 0, 1, 2 P30, P33 PWM2, PWM3	Total of all applicable pins				80	
		ΣIOAL(7)	Port B, P31	Total of all applicable pins				45	
		ΣIOAL(8)	Port C	Total of all applicable pins				45	
		ΣIOAL(9)	Ports B, C, P31	Total of all applicable pins				80	

Note 1-1: The mean output current is a mean value measured over 100ms.

Continued on next page.

Continued from preceding page.

Parameter	Cumbal	Symbol Pin/Remarks	Conditions		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Power dissipation	Pd max	QIP64E(14×14)	Ta=-40 to +85°C				292	
		TQFP64J(7×7)					133	
		FLGA68K(6.0×6.0)					96	mW
		FLGA64(5.0×5.0)					91	
Operating ambient	Topr				-40		+85	
temperature					-40		+00	°C
Storage ambient temperature	Tstg				-55		+125	

Allowable Operating Range at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

D	0	Dia/Danasala	O a madition and			Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V _{DD} 3	0.245μs ≤ tCYC ≤ 200μs		3.0		5.5	
supply voltage			0.367µs ≤ tCYC ≤ 200µs		2.5		5.5	
(Note 2-1)			0.681µs ≤ tCYC ≤ 200µs		2.2		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1=V _{DD} 2=V _{DD} 3	RAM and register contents sustained in HOLD mode.		2.0		5.5	
High level input voltage	V _{IH} (1)	Ports 1, 2 P71 to P73 P70 port input/ interrupt side		2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Ports 0, 3, 8, B, C PWM2, PWM3		2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (3)	Port 70 watchdog timer side		2.2 to 5.5	0.9V _{DD}		V _{DD}	V
	V _{IH} (4)	XT1, XT2, CF1, CF2, RES		2.2 to 5.5	0.75V _{DD}		V_{DD}	
Low level input voltage	V _{IL} (1)	Ports 1, 2 P71 to P73		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
		P70 port input/ interrupt side		2.2 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0, 3, 8, B, C PWM2, PWM3		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				2.2 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	Port 70 watchdog timer side		2.2 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (4)	XT1, XT2, CF1, CF2, RES		2.2 to 5.5	V _{SS}		0.25V _{DD}	
Instruction cycle	tCYC			3.0 to 5.5	0.245		200	
time				2.5 to 5.5	0.367		200	μs
(Note 2-2)				2.2 to 5.5	0.681		200	
External system	FEXCF(1)	CF1	CF2 pin open	3.0 to 5.5	0.1		12	
clock frequency			System clock frequency	2.5 to 5.5	0.1		8	
		division ratio=1/1 • External system clock duty =50±5%	2.2 to 5.5	0.1		4	MHz	
			CF2 pin open	3.0 to 5.5	0.2		24.4	
			System clock frequency	2.5 to 5.5	0.2		16	
			division ratio=1/2	2.2 to 5.5	0.2		8	

Note 2-1: V_{DD} must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Continued on next page.

Continued from preceding page.

Parameter	Parameter Symbol Pin/Remarks Con					Specif	ication	
Farameter	Symbol	FIII/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation See Fig. 1.	3.0 to 5.5		12		
range (Note 2-3)	FmCF(2)	CF1, CF2	8MHz ceramic oscillation See Fig. 1.	2.5 to 5.5		8		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation See Fig. 1.	2.2 to 5.5		4		
	FmRC		Internal RC oscillation	2.2 to 5.5	0.3	1.0	2.0	
	FmVMRC(1)		 Frequency variable RC source oscillation When VMRAJ2 to 0=4, VMFAJ2 to 0=0, VMSL4M=0 	2.2 to 5.5		10		MHz
	FmVMRC(2)		 Frequency variable RC source oscillation When VMRAJ2 to 0=4, VMFAJ2 to 0=0, VMSL4M=1 	2.2 to 5.5		4		
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 2.	2.2 to 5.5		32.768		kHz
Frequency	OpVMRC(1)		When VMSL4M=0	2.2 to 5.5	8	10	12	
variable RC oscillation usable range	OpVMRC(2)		When VMSL4M=1	2.2 to 5.5	3.5	4	4.5	MHz
Frequency variable RC	VmADJ(1)		Each step of VMRAJn (Wide range)	2.2 to 5.5	8	24	64	
oscillation adjustment range	VmADJ(2)		Each step of VMFAJn (Small range)	2.2 to 5.5	1	4	8	%

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Electrical Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specifica	ition	
Faiametei	Symbol	Fill/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3 Ports 7, 8 Ports B, C RES PWM2, PWM3	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	2.2 to 5.5			1	
	I _{IH} (2)	XT1, XT2, CF1, CF2	For input port specification VIN=VDD	2.2 to 5.5			1	
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.2 to 5.5			15	
Low level input current	I _{IL} (1)	Ports 0, 1, 2, 3 Ports 7, 8 Ports B, C RES PWM2, PWM3	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.2 to 5.5	-1			μΑ
	I _{IL} (2)	XT1, XT2, CF1, CF2	For input port specification VIN=VSS	2.2 to 5.5	-1			
	I _{IL} (3)	CF1	V _{IN} =V _{SS}	2.2 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2, 3	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)	Ports B, C	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
	V _{OH} (4)	P71 to P73	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (5)		I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
	V _{OH} (6)	PWM2, PWM3	I _{OH} =-10mA	4.5 to 5.5	V _{DD} -1.5			
	V _{OH} (7)		I _{OH} =-1.6mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (8)		I _{OH} =-1mA	2.2 to 5.5	V _{DD} -0.4			.,
Low level output	V _{OL} (1)	Ports 0, 1, 2, 3	I _{OL} =10mA	4.5 to 5.5			1.5	V
voltage	V _{OL} (2)	Ports B, C	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (3)	PWM2, PWM3	I _{OL} =1mA	2.2 to 5.5			0.4	
	V _{OL} (4)	Ports 7, 8	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (5)	XT2, CF2	I _{OL} =1mA	2.2 to 5.5			0.4	
	V _{OL} (6)	P00, P01	I _{OL} =30mA	4.5 to 5.5			1.5	
	V _{OL} (7)		I _{OL} =5mA	3.0 to 5.5			0.4	
	V _{OL} (8)		I _{OL} =2.5mA	2.2 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	l.O
	Rpu(2)	Ports 7, B, C		2.2 to 5.5	18	50	150	kΩ
Hysteresis voltage	VHYS	RES Ports 1, 2, 7		2.2 to 5.5		0.1V _{DD}		٧
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	2.2 to 5.5		10		pF

Serial Input/Output Characteristics at $Ta=-40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1=V_{SS}2=V_{SS}3=0V$ 1. SIO0 Serial I/O Characteristics (Note 4-1-1)

		Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
		rarameter	Symbol	FIII/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 6.		2			
	ck	Low level pulse width	tSCKL(1)				1			
	Input clock	High level	tSCKH(1)			2.2 to 5.5	1			
lock	lupi	pulse width	tSCKHA(1)		Continuous data transmission/reception mode See Fig. 6. (Note 4-1-2)		4			tCYC
Serial clock		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected See Fig. 6.		4/3			
	ock	Low level pulse width	tSCKL(2)					1/2		tSCK
	Output clock	High level pulse width	tSCKH(2)			2.2 to 5.5		1/2		ISCK
	O		tSCKHA(2)		Continuous data transmission/reception mode CMOS output selected See Fig. 6.		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	tCYC
Serial input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of SIOCLK.	2.2 to 5.5	0.03			
Serial	Da	ta hold time	thDI(1)		• See Fig. 6.	2.2 to 5.5	0.03			
	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-3)	2.2 to 5.5			(1/3)tCYC +0.05	μs
Serial output	Input		tdD0(2)		Synchronous 8-bit mode (Note 4-1-3)	2.2 to 5.5			1tCYC +0.05	
Serie	Output clock		tdD0(3)		(Note 4-1-3)	2.2 to 5.5			(1/3)tCYC +0.15	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SIORUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

	-	Parameter	Symbol	Symbol Pin/Remarks Conditions			Specif	fication		
	r	rarameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	×	Frequency	tSCK(3)	SCK1(P15)	See Fig. 6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.2 to 5.5	1			
clock	ını	High level pulse width	tSCKH(3)				1			tCYC
Serial clock	čk	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 6.		2			
	Output clock	Low level pulse width	tSCKL(4)			2.2 to 5.5		1/2		tSCK
	O	High level pulse width	tSCKH(4)					1/2		ISCK
Serial input	Da	ta setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of SIOCLK.	2.2 to 5.5	0.03			
Serial	Da	ta hold time	thDI(2)		• See Fig. 6.	2.2 to 5.5	0.03			
Serial output	Ou	tput delay time	tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.	2.2 to 5.5			(1/3)tCYC +0.05	μs

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -40°C to +85°C, $V_SS1 = V_SS2 = V_SS3 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level	tPIH(1)	INT0(P70),	Interrupt source flag can be set.					
pulse width	tPIL(1)	INT1(P71),	Event inputs for timer 0 or 1					
		INT2(P72),	are enabled.					
		INT3(P73) when						
		noise filter not used,		2.2 to 5.5	1			
		INT4(P20 to P23),						
		INT5(P24 to P27),						
		INT6(P26),						
		INT7(P27)						tCYC
	tPIH(2)	INT3(P73) when	Interrupt source flag can be set.					1010
	tPIL(2)	noise filter time	Event inputs for timer 0 are	2.2 to 5.5	2			
		constant is 1/1	enabled.					
	tPIH(3)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(3)	noise filter time	Event inputs for timer 0 are	2.2 to 5.5	64			
		constant is 1/32	enabled.					
	tPIH(4)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(4)	noise filter time	Event inputs for timer 0 are	2.2 to 5.5	256			
		constant is 1/128	enabled.					
	tPIL(5)	RES	Resetting is enabled.	2.2 to 5.5	200			μs

AD Converter Characteristics at Ta = -40°C to +85°C, VSS1 = VSS2 = VSS3 = 0V

5	0	D: /D	0 - 177			Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P80) to		3.0 to 5.5		8		bit
Absolute accuracy	ET	AN6(P86), AN8(PC0),	(Note 6-1)	3.0 to 5.5			±1.5	LSB
Conversion time	tCAD	AN9(PC1), AN10(PC2), AN11(PC3),	AD conversion time=32×tCYC (when ADCR2=0) (Note 6-2)	4.5 to 5.5	15.68 (tCYC= 0.49µs)		97.92 (tCYC= 3.06µs)	
	AN12(CF1), AN13(CF2)		3.0 to 5.5	21.8 (tCYC= 0.681µs)		97.92 (tCYC= 3.06µs)		
			AD conversion time=64×tCYC (when ADCR2=1) (Note 6-2)	4.5 to 5.5	18.82 (tCYC= 0.294µs)		97.92 (tCYC= 1.53µs)	μѕ
				3.0 to 5.5	43.6 (tCYC= 0.681µs)		97.92 (tCYC= 1.53µs)	
Analog input voltage range	VAIN			3.0 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH]	VAIN=V _{DD}	3.0 to 5.5			1	
input current	IAINL	1	VAIN=V _{SS}	3.0 to 5.5	-1			μΑ

Note 6-1: The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy value.

Note 6-2: The conversion time refers to the interval from the time the instruction for starting the converter is issued to the time the complete digital value corresponding to the analog input value is loaded in the required register.

$\textbf{Consumption Current Characteristics} \ \, at \ \, Ta = -40^{\circ}C \ \, to \ \, +85^{\circ}C, \ \, V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pin/	Conditions			Specific	ation	
1 didilietei	Gymbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption	IDDOP(1)	$V_{DD}1$ $=V_{DD}2$ $=V_{DD}3$	FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	4.5 to 5.5		8.38	20.9	
current (Note 7-1)	IDDOP(2)		Internal RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	3.0 to 3.6		4.85	11.9	
	IDDOP(3)		FmCF=8MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		6.36	15.7	
	IDDOP(4)		System clock set to 8MHz side Internal RC oscillation stopped.	3.0 to 3.6		3.64	9.1	
	IDDOP(5)		Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.5 to 3.0		2.42	7.1	
	IDDOP(6)		FmCF=4MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		2.42	6	
	IDDOP(7)		System clock set to 4MHz side Internal RC oscillation stopped.	3.0 to 3.6		1.31	3.3	
	IDDOP(8)		Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.2 to 3.0		0.87	2.5	mA
	IDDOP(9)		FmCF=0Hz (oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		0.76	3.1	
	IDDOP(10)		System clock set to internal RC oscillation	3.0 to 3.6		0.4	1.7	
	IDDOP(11)		Frequency variable RC oscillation stopped.1/2 frequency division ratio	2.2 to 3.0		0.28	1.35	
	IDDOP(12)		FmCF=0Hz (oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode Internal RC oscillation stopped.	4.5 to 5.5		8.08	20	
	IDDOP(13)		System clock set to 10MHz with frequency variable RC oscillation 1/1 frequency division ratio	3.0 to 3.6		4.75	12	
	IDDOP(14)		FmCF=0Hz (oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		4.55	11.5	
	IDDOP(15)		Internal RC oscillation stopped. System clock set to 4MHz with	3.0 to 3.6		2.63	6.6	
	IDDOP(16)		frequency variable RC oscillation • 1/1 frequency division ratio	2.2 to 3.0		1.72	5	
	IDDOP(17)		FmCF=0Hz (oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		35.4	115	
	IDDOP(18)		System clock set to 32.768kHz side Internal RC oscillation stopped.	3.0 to 3.6		18.2	65	μΑ
	IDDOP(19)	Frequency	Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.2 to 3.0		12.1	46	

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

Continued on next page.

Continued from preceding page.

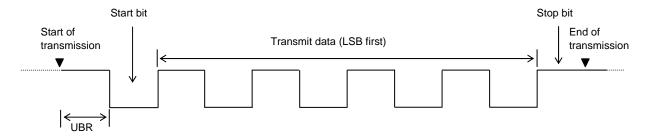
Parameter	Symbol	Pin/	Conditions			Specific	cation	
- arameter	Cymbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
HALT mode consumption current	IDDHALT(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	HALT mode FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		3.71	8.2	
(Note 7-1)	IDDHALT(2)		System clock set to 12MHz side Internal RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	3.0 to 3.6		2.06	4.6	
	IDDHALT(3)		HALT mode FmCF=8MHz ceramic oscillation mode	4.5 to 5.5		2.68	5.9	
	IDDHALT(4)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 8MHz side Internal RC oscillation stopped.	3.0 to 3.6		1.44	3.3	
	IDDHALT(5)		Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.5 to 3.0		1.03	2.5	
	IDDHALT(6)		HALT mode FmCF=4MHz ceramic oscillation mode Total no 700kHz ceramic assillation mode	4.5 to 5.5		1.18	2.65	
	IDDHALT(7)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 4MHz side Internal RC oscillation stopped.	3.0 to 3.6		0.62	1.5	
	IDDHALT(8)		Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.2 to 3.0		0.41	1.1	mA
	IDDHALT(9)		HALT mode FmCF=0Hz (oscillation stopped)	4.5 to 5.5		0.38	1.3	
	IDDHALT(10)		FsX'tal=32.768kHz crystal oscillation mode System clock set to internal RC oscillation	3.0 to 3.6		0.21	0.75	
	IDDHALT(11)		Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.2 to 3.0		0.13	0.54	
	IDDHALT(12)		HALT mode FmCF=0Hz (oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		3.71	8.2	
	IDDHALT(13)		Internal RC oscillation stopped. System clock set to 10MHz with frequency variable RC oscillation 1/1 frequency division ratio	3.0 to 3.6		2.06	4.6	
	IDDHALT(14)		HALT mode FmCF=0Hz (oscillation stopped)	4.5 to 5.5		1.75	4	
	IDDHALT(15)		FsX'tal=32.768kHz crystal oscillation mode Internal RC oscillation stopped. System clock set to 4MHz with frequency	3.0 to 3.6		1.03	2.5	
	IDDHALT(16)		variable RC oscillation • 1/1 frequency division ratio	2.2 to 3.0		0.72	1.8	
	IDDHALT(17)		HALT mode FmCF=0Hz (oscillation stopped)	4.5 to 5.5		19.1	68	
	IDDHALT(18)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal RC oscillation stopped.	3.0 to 3.6		10.3	38	
	IDDHALT(19)		Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.2 to 3.0		6.7	26	
HOLD mode	IDDHOLD(1)	V _{DD} 1	• HOLD mode	4.5 to 5.5		0.1	20	μΑ
consumption	IDDHOLD(2)		CF1=V _{DD} or open (External clock mode)	3.0 to 3.6		0.06	12	
current	IDDHOLD(3)			2.2 to 3.0		0.04	8	
Timer HOLD	IDDHOLD(4)		• Timer HOLD mode	4.5 to 5.5		16.5	58	
mode consumption	IDDHOLD(5)		CF1=V _{DD} or open (External clock mode) FsX'tal=32.768kHz crystal oscillation mode	3.0 to 3.6		8.8	32	
current	IDDHOLD(6)		alva includes none of the aumenta that f	2.2 to 3.0		5.2	20	.11

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

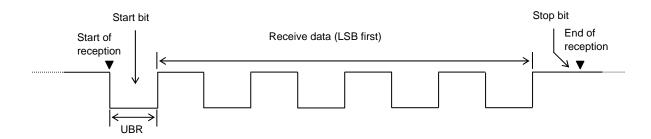
F-ROM Programming Characteristics at $Ta = -10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol Pin/Remarks		Conditions		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Onboard programming current	IDDFW(1)	V _{DD} 1	Without CPU current	3.0 to 5.5		5	10	mA
Programming	tFW(1)		Erasing	2.0 to F.F.		20	30	ms
time	tFW(2)		Programming	3.0 to 5.5		40	60	μs

$\textbf{UART (Full Duplex) Operating Conditions} \ \ at \ Ta = -40^{\circ}C \ \ to \ +85^{\circ}C, \ V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$


Danamatan	O. made al	Din/Domorko	O a madistica ma		Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Transfer rate	UBR	UTX(P20), URX(P21)		2.2 to 5.5	16/3		8192/3	tCYC	

Data length: 7, 8, and 9 bits (LSB first)


Stop bits: 1 bit (2-bit in continuous data transmission)

Parity bits: None

Example of Continuous 8-bit Data Transmission Mode Processing (first transmit data=55H)

Example of Continuous 8-bit Data Reception Mode Processing (first receive data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1	Characteristics	of a Sam	nle Main S	System Clock	Oscillator	Circuit with a	Ceramic Oscillator
I doic I	Characteristics	or a ban	pic mann i	Dystein Cidek	Oscillator	Circuit with a	Column Oscillator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating	Oscillation Stabilization Time		
			C1 [pF]	C2 [pF]	Rf1 [Ω]	Rd1 [Ω]	Voltage Range [V]	typ [ms]	max [ms]	Remarks
12MHz	MURATA	CSTCE12M0G52-R0	(10)	(10)	Open	680	3.0 to 5.5	0.05	0.15	Internal C1, C2
8MHz	MURATA	CSTCE8M00G52-R0	(10)	(10)	Open	1k	2.5 to 5.5	0.13	0.4	Internal C1, C2
		CSTLS8M00G53-B0	(15)	(15)	Open	1k	2.5 to 5.5	0.12	0.4	
4MHz	MURATA	CSTCR4M00G53-R0	(15)	(15)	Open	2.2k	2.2 to 5.5	0.07	0.2	Internal C1, C2
		CSTLS4M00G53-B0	(15)	(15)	Open	2.2k	2.2 to 5.5	0.05	0.15	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		
			C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]	Range [V]	typ [s]	max [s]	Remarks
32.768kHz	EPSON TOYOCOM	MC-306	18	18	Open	560k	2.2 to.5.5	1.3	3.0	Applicable CL value= 12.5pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

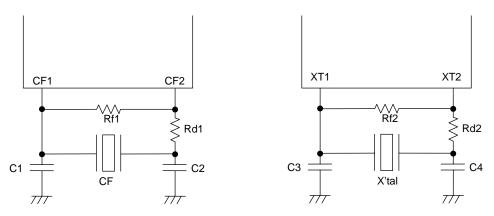


Figure 1 CF Oscillator Circuit

Figure 2 XT Oscillator Circuit

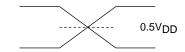
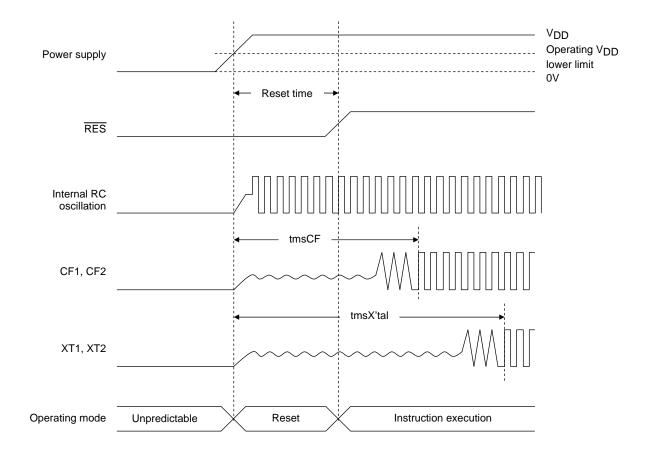
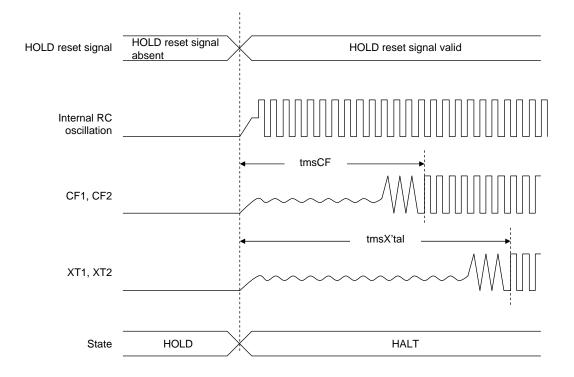
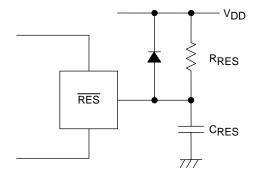




Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Figure 4 Oscillation Stabilization Times

Note:

Determine the value of CRES and RRES so that the reset signal is present for a period of $200\mu s$ after the supply voltage goes beyond the lower limit of the IC's operating voltage.

Figure 5 Reset Circuit

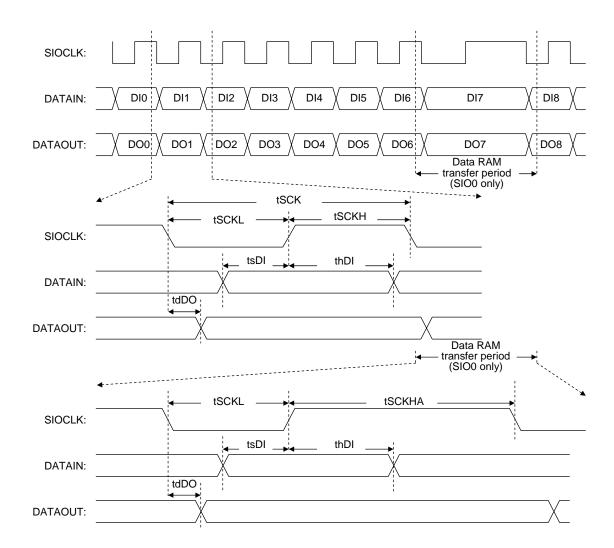


Figure 6 Serial I/O Waveforms

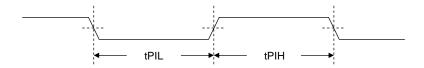


Figure 7 Pulse Input Timing Signal Waveform

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of August, 2008. Specifications and information herein are subject to change without notice.