

SANYO Semiconductors

DATA SHEET

An ON Semiconductor Company

LC87F2C64A — CMOS IC 64K-byte FROM and 2048-byte RAM integrated 8-bit 1-chip Microcontroller

Overview

The SANYO LC87F2C64A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 83.3ns, integrates on a single chip a number of hardware features such as 64K-byte flash ROM (onboard programmable), 2048-byte RAM, an on-chip debugger, sophisticated 16-bit timer/counter (may be divided into 8-bit timers), a 16-bit timer/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), four 8-bit timers with a prescaler, a calendar function (RTC), High-speed clock counter, a synchronous SIO interface (with automatic block transmission/reception capabilities), an asynchronous/synchronous SIO interface, two channels of UART interface (full duplex), four 12bit-PWMs, a 12/8-bit 16-channel AD converter, a system clock frequency divider, an internal reset function and a 28-source 10-vector interrupt feature.

Features

- ■Flash ROM
 - On-board-programmable with wide range (3.0 to 5.5V) of voltage source
 - Block-erasable in 128 byte units
 - Writable in 2-byte units
 - 65536×8 bits

■RAM

- 2048×9 bits
- ■Minimum Bus Cycle
 - 83.3ns (12MHz at V_{DD}=3.0V to 5.5V)
 - 250ns (4MHz at V_{DD}=2.4V to 5.5V)

Note: The bus cycle time here refers to the ROM read speed.

- * This product is licensed from Silicon Storage Technology, Inc. (USA), and manufactured and sold by SANYO Semiconductor Co., Ltd.
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■Minimum Instruction Cycle Time

- 250ns (12MHz at V_{DD}=3.0 to 5.5V)
- 750ns (4MHz at V_{DD}=2.4 to 5.5V)

■Temperature Range

• -30 to +70 degree Celsius

■Ports

• Normal withstand voltage I/O ports

Ports I/O direction can be designated in 1-bit units

71 (P0n, P1n, P2n, P30 to P34, P70 to P73, P8n, PAn,

PBn, PCn, Pen, XT2, CF2)

2 (XT1, CF1)

• Normal withstand voltage input port (Oscillator)

1 (RES)

• Reset pin • Power pins

6 (VSS1 to VSS3, VDD1 to VDD3)

■Timers

• Timer 0: 16-bit timer/counter with a capture register

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) \times 2 channels

Mode 1:8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) + 8-bit counter (with a 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs) (toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs) (The lower-order 8 bits can be used as PWM.)

- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Base timer
 - 1) The clock is selectable from the sub-clock (32.768kHz crystal oscillation/slow RC oscillation), system clock, and prescaler output from timer 0.
 - 2) Interrupts are programmable in 5 different time schemes.
- Real time clock (RTC)
 - 1) Used with a base timer, it can be used as a century + year + month + day + hour + minute + second counter.
 - 2) Calendar counts up to December 31, 2799 with automatic leap-year calculation.

■High-speed Clock Counter

- Count clocks with a maximum clock rate of 24MHz (when main clock is 12MHz)
- Real-time output

■SIO

- SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baud rate generator (maximum transfer clock cycle = 4/3 tCYC)
 - 3) Automatic continuous data transmission (1 to 256 bits specifiable in 1 bit units, suspension and resumption of data transmission possible in 1 byte units)
 - 4) HOLD/X'tal HOLD mode release function by receiving 1-byte (8-bit clock)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baud rates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 TCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■UART: 2 channels

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator

■Remote Control Receiver Circuit

- Noise rejection function on P73/INT3/T0IN pin (noise rejection filter's time constant can be selected from 1, 32 or 128 tCYC.)
- ■AD Converter: 12 bits × 16 channels
 - 12 bits/8 bits AD converter resolution selectable
- ■PWM: 4 channels
 - Multi frequency 12-bit PWM

■Clock Output Function

- Output clock with a frequency 1/1, 1/2, 1/4, 1/8, 1/16, 1/32 or 1/64 of the source clock of the system clock.
- Output clock of the sub-clock.

■Buzzer Output

• 2kHz or 4kHz buzzer output can be generated using base timer.

■Watchdog Timer

- Watchdog timer can generate interrupt or system reset.
- Two types of watchdog timers are available:
 - (1) External RC watchdog timer
 - (2) Base timer watchdog timer
- Watchdog timer with base timer can select only one period (1, 2, 4 or 8s) by the user option. Once set the watchdog timer period and start the watchdog timer, the period is not changeable.

■Interrupts

- 28 sources, 10 vector addresses
 - (1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - (2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/INT4/T0L
4	0001BH	H or L	INT3/INT5/Base timer0/ Base timer1/RTC
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1 receive/UART2 receive
8	0003BH	H or L	SIO1/UART1 transmit/UART2 transmit
9	00043H	H or L	ADC/T6/T7/PWM4, 5/SPI
10	0004BH	H or L	Port0/T4/T5/PWM0, 1

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- IFLG (List of interrupt source flag function)
 - (1) Shows a list of interrupt source flags that caused a branching to a particular vector address (shown in the table above).

■Subroutine Stack Levels

• 1024 levels (Stack is allocated in RAM)

■High-speed Multiplication/Division Instructions

16 bits×8 bits (5 tCYC execution time)
24 bits×16 bits (12 tCYC execution time)
16 bits÷8 bits (8 tCYC execution time)
24 bits÷16 bits (12 tCYC execution time)

■Oscillation Circuits

On-chip fast RC oscillation circuit
 On-chip slow RC oscillation circuit
 : For system clock
 : For system clock

CF oscillation circuit
 Crystal oscillation circuit
 For system clock, with built in Rf
 For low-speed system clock

• On-chip Frequency variable RC oscillation circuit : For system clock

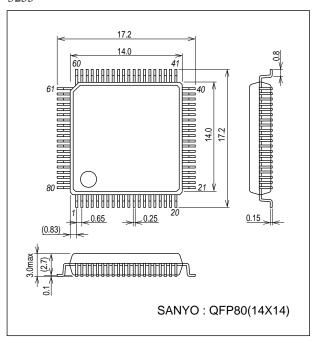
- (1) Adjustable by $\pm 4\%$ (typical) step from selected center frequency
- (2) Frequency measurable by referencing input signal from XT1

■System Clock Divider Function

- Enables low power consumption operation
- The minimum instruction cycle selectable from 250ns, 500ns, 1.0μs, 2.0μs, 4.0μs, 8.0μs, 16.0μs, 32.0μs, and 64μs (at a main clock rate of 12MHz).

■Internal Reset Function

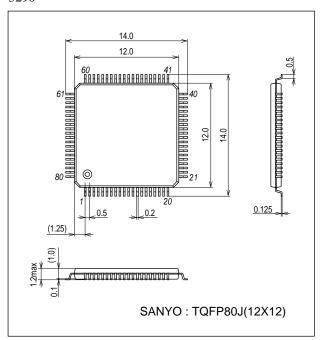
- Power-on reset (POR) function
 - (1) POR reset is generated only at power-on.
 - (2) The POR release level can be selected through option configuration.
- Low-voltage detection reset (LVD) function
 - (1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - (2) The use/no-use of the LVD function and the low voltage threshold level can be selected through option configuration.

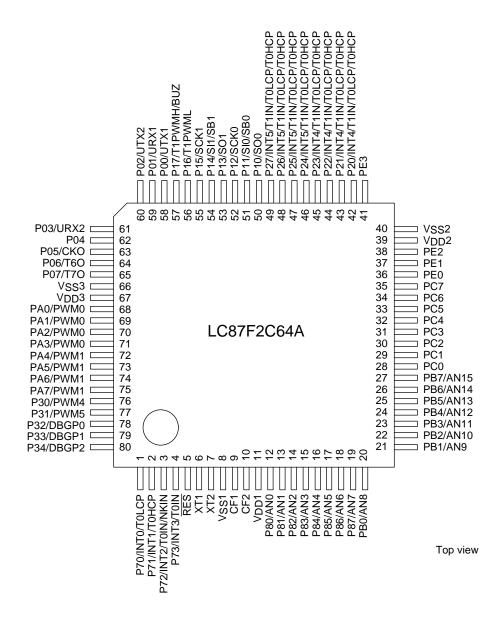

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - (1) Oscillation is not halted automatically.
 - (2) There are three ways of resetting the HALT mode.
 - 1) Setting the reset pin to the lower level
 - 2) System resetting by watchdog timer
 - 3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - (1) The CF, RC, crystal, and frequency variable RC oscillators automatically stop operation.
 - (2) There are five ways of resetting the HOLD mode.
 - 1) Setting the reset pin to the lower level
 - 2) System resetting by watchdog timer
 - 3) Setting at least one of the INT0, INT1, INT2, INT3, INT4, INT5 pins to the specified level
 - 4) Having an interrupt source established at port 0
 - 5) Having an interrupt source established in SPI receiving 1-byte (8-bit clock)
- X''tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - (1) The CF, RC, and frequency variable RC oscillators automatically stop operation.
 - (2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - (3) Power-save mode is available for even lower current consumption.
 - (4) There are seven ways of resetting the X'tal HOLD mode.
 - 1) Setting the reset pin to the low level
 - 2) System resetting by watchdog timer
 - 3) Setting at least one of the INT0, INT1, INT2, INT3, INT4, INT5 pins to the specified level
 - 4) Having an interrupt source established at port0
 - 5) Having an interrupt source established in the base timer circuit
 - 6) Having an interrupt source established in the RTC
 - 7) Having an interrupt source established in SPI receiving 1-byte (8-bit clock)
- ■On-chip Debugging Function (flash ROM version)
 - Supports software debugging with the test device installed on the target board.
- ■Data Security Function (flash ROM version)
 - Protects the program data stored in flash memory from unauthorized read or copy.
 Note: The data security function does not necessarily provide an absolute data security.
- ■Shipping form
 - QFP80 (14×14): Lead-free type
 - TQFP80J (12×12): Lead-free type
- ■Development Tools
 - On-chip-debugger: TCB87 TypeB + LC87F2C64A

Package Dimensions

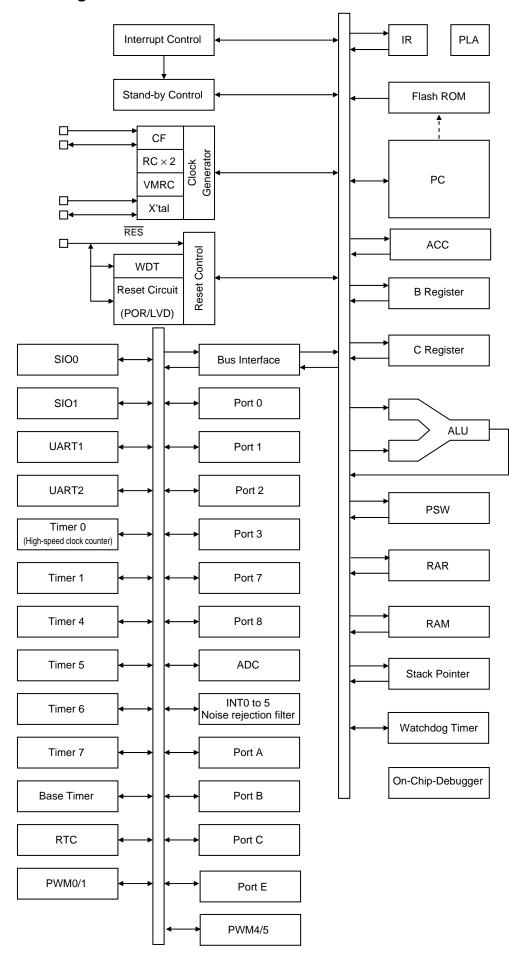
unit: mm (typ)


3255


Package Dimensions

unit: mm (typ)

3290



Pin Assignment

SANYO: QFP80 (14×14) "Lead-free type" SANYO: TQFP80J (12×12) "Lead-free type"

System Block Diagram

Pin Description

Pin Name	I/O			Des	cription			Option
V _{SS} 1 to V _{SS} 3	-	- Power supply p	oin					No
V _{DD} 1 to V _{DD} 3	-	+ Power supply	pin					No
V1	-	Open						No
VDC	-	Open						No
CUP1, CUP2	<u> </u>	Open						No
PORT 0	I/O	8-bit I/O port						Yes
P00 to P07	1/0	I/O specifiable	in 1 bit units					165
1 00 10 1 07		Pull-up resistor		on and off in 1 h	nit units			
		HOLD release		o aa o				
		Port 0 interrupt	•					
		Other functions:	•					
		P00: UART1 tr	ansmit					
		P01: UART1 re	eceive					
		P02: UART2 tr	ansmit					
		P03: UART2 re	eceive					
		P05: System c	lock output					
		P06: Timer 6 to	oggle output					
		P07: Timer 7 to	oggle output					
PORT 1	I/O	8-bit I/O port						Yes
P10 to P17		I/O specifiable						
		Pull-up resistor	s can be turned	on and off in 1 b	oit units.			
		Other functions:						
		P10: SIO0 data	-					
		P11: SIO0 data P12: SIO0 cloc	•					
		P13: SIO1 data						
		P14: SIO1 data	· ·					
		P15: SIO1 clos	-					
		P16: Timer 1P						
			WMH output/bee	eper output				
PORT 2	I/O	• 8-bit I/O port						Yes
P20 to P27		I/O specifiable	in 1 bit units					
		Pull-up resistor	s can be turned	on and off in 1 b	oit units.			
		Other functions:						
		P20 to P23: IN	T4 input/HOLD i	release input/tim	er 1 event input			
		/ti	mer 0L capture i	nput/timer 0H ca	apture input			
		P24 to P27: IN	T5 input/HOLD i	release input/tim	er 1 event input			
			mer 0L capture i	nput/timer 0H ca	apture input			
		Interrupt ackno	wledge type	ı	1	1	1	
			Rising	Falling	Rising &	H level	L level	
		INIT 4	Yes	Vaa	Falling	No	No	
		INT4 INT5		Yes	Yes Yes	No No	No No	
		IIII	Yes	Yes	162	No	No	
PORT 3	I/O	• 5-bit I/O port						Yes
P30 to P34	1,0	I/O specifiable	in 1 hit units					163
. 55 15 1 54		Pull-up resistor		on and off in 1 h	oit units.			
		Other functions:	_ Ju 50 turriou	On III 1 k				
		P30: PWM4 ou	ıtput					
		P31: PWM5 ou	•					
			•	: On-chip-debug	ger port (Only on	Flash version)		

Continued on next page.

Continued from preceding page.

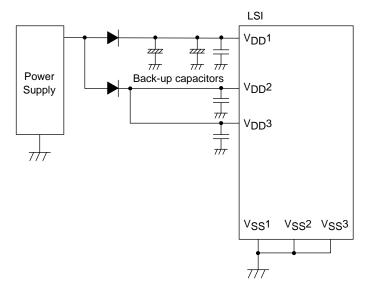
Pin Name	I/O			Des	cription				Option
PORT 7	I/O	• 4-bit I/O port							No
P70 to P73		• I/O specifiable	in 1 bit units						
		Pull-up resistor	rs can be turned	on and off in 1 b	it units.				
		Other functions:							
		P70: INT0 inpu	ut/HOLD release	input/timer 0L c	apture input				
		/watchdo	g timer output						
		P71: INT1 inpu	ut/HOLD release	input/timer 0H o	apture input				
		P72: INT2 inpu	ut/HOLD release	input/timer 0 ev	ent input				
		/timer 0L	capture input/hig	h speed clock o	ounter input				
		P73: INT3 inpu	ut (with noise filte	r)/ HOLD releas	e input				
		/timer 0 e	vent input/timer	OH capture inpu	t				
		Interrupt acknowledge	wledge type						
			Rising	Falling	Rising & Falling	H level	L level		
		INT0	Yes	Yes	No	Yes	Yes	1	
		INT1	Yes	Yes	No	Yes	Yes		
		INT2	Yes	Yes	Yes	No	No		
		INT3	Yes	Yes	Yes	No	No		
			100	103	100	110	140	1	
PORT 8	I/O	• 8-bit I/O port							No
P80 to P87	,, ,	I/O specifiable	in 1 bit units						
-		Other functions:							
			10 to AN7): AD co	onverter input					
PORT A	I/O	• 8-bit I/O port	,						Yes
PA0 to PA7	,,,	I/O specifiable	in 1 bit units						
			rs can be turned	on and off in 1 b	it units.				
		Other functions:							
		PA0 to PA3: P	WM0 output						
		PA4 to PA7: P	•						
PORT B	I/O	• 8-bit I/O port	www.catpat						Yes
PB0 to PB7	.,,	I/O specifiable	in 1 hit units						100
1 50 10 1 57			rs can be turned	on and off in 1 h	it units				
		Other functions:	o can be tamea		it driito.				
			N8 to AN15): AD	converter input					
PORT C	I/O	• 8-bit I/O port	110 10 71110): 712	conventor input					Yes
PC0 to PC7	.,,	I/O specifiable	in 1 hit units						100
1 00 10 1 01			rs can be turned	on and off in 1 h	it units				
PORT E	I/O	• 4-bit I/O port		0.1 0.10 0.1 111 1 2					Yes
PE0 to PE3	.,,	I/O specifiable	in 1 bit units						100
			rs can be turned	on and off in 1 b	it units.				
RES	I/O	1	put pin/Internal r						No
XT1	1	1	8kHz crystal osci						No
211	'	Other functions:		nation					140
		General purp							
			DD1 when the po	rt is not used					
VTO	1/0							_	N-
XT2	I/O	· ·	'68kHz crystal os	ciliation					No
		Other functions:							
		General-purp *Must be set for	=	o and kant an -	if not to be				
CF1	1			e anu kept oper	if not to be used	•			No
OFI	'	Input for ceram Other functions:							No
		Other functions:							
		General purp *Connect to V		rt in not us!					
			DD1 when the po	it is not used.					
CF2	I/O	Output for cera							No
		Other functions:							
		General-purp	=						
		*Must be set fo	or oscillation mod	e and kept oper	if not to be used	<u> </u>			

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up/down resistor. Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected iIn Units of	Option Type	Output Type	Pull-Up Resistor
P00 to P07	41.5	1	CMOS	Programmable
	1bit	2	Nch-open drain	Programmable
P10 to P17	41.5	1	CMOS	Programmable
	1bit	2	Nch-open drain	Programmable
P20 to P27	464	1	CMOS	Programmable
	1bit	2	Nch-open drain	Programmable
P30 to P34	41.5	1	CMOS	Programmable
	1bit	2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
P80 to P87	-	No	Nch-open drain	No
PA0 to PA7	41.5	1	CMOS	Programmable
	1bit	2	Nch-open drain	Programmable
PB0 to PC7	41.7	1	CMOS	Programmable
	1bit	2	Nch-open drain	Programmable
PC0 to PC7	41.5	1	CMOS	Programmable
	1bit	2	Nch-open drain	Programmable
PE0 to PE3	41.5	1	CMOS	Programmable
	1bit	2	Nch-open drain	Programmable
XT2	-	No	32.768kHz crystal oscillator output or Nch-open drain when selected as normal port	No
CF2	-	No	Ceramic resonator output or Nch-open drain when selected as normal port	No

User Option Table


Option Name	Option to be Applied on	Mask-ROM Version*1	Flash-ROM Version	Option Selected in Units of	Option Selection
Port output type	P00 to P07				CMOS
		Yes	Yes	1 bit	Nch-open drain
	P10 to P17				CMOS
		Yes	Yes	1 bit	Nch-open drain
	P20 to P27				CMOS
		Yes	Yes	1 bit	Nch-open drain
	P30 to P34	.,	.,		CMOS
		Yes	Yes	1 bit	Nch-open drain
	PA0 to PA7				CMOS
		Yes	Yes	1 bit	Nch-open drain
	PB0 to PB7				CMOS
		Yes	Yes	1 bit	Nch-open drain
	PC0 to PC7				CMOS
		Yes	Yes	1 bit	Nch-open drain
	PE0 to PE3				CMOS
		Yes	Yes	1 bit	Nch-open drain
Program start	-				0000H
address		No*2	Yes	-	FE00H
Base timer Watchdog	Watchdog timer				1s
timer	period				2s
		Yes	Yes	-	4s
					8s
Low-Voltage	Detection level				
detect function	(Enable)				
		-	Yes	-	
	Power-on reset level				
	(Disable)				
		-	Yes	-	

^{*1:} The option selection cannot to be changed after the mask is created.

^{*2:} Program start address for the mask-ROM version is 0000H.

- *Note1: Connect the IC as shown below to minimize the noise input to the V_{DD}1. Be sure to electrically short the V_{SS}1, V_{SS}2 and V_{SS}3 pins.
- *Note2: The internal memory is sustained by $V_{DD}1$. If none of $V_{DD}2$ and $V_{DD}3$ are backed up, the high level output at the ports are unstable in the HOLD backup mode, allowing through current to flow into the input buffer and thus shortening the backup time. Make sure that the port outputs are held at the low level in the HOLD backup mode.

Example of power connection when power-save mode is used

Absolute Maximum Ratings at Ta=25°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

							Spec	ification	
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Maxir	num supply voltage	V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3	• V _{DD} 1=V _{DD} 2=V _{DD} 3		-0.3		+6.5	
Input	voltage	VI	XT1, CF1, RES			-0.3		V _{DD} +0.3	V
Input/	output voltage	VIO	Ports 0, 1, 2, 3, 7, 8, A, B, C, E, XT2, CF2			-0.3		V _{DD} +0.3	V
	Peak output current	IOPH(1)	Ports 0, 1, 2, 3, A, B, C, E	CMOS output select Por 1 applicable pin		-10			
	current	IOPH(2)	P71, P72, P73	Per 1 applicable pin Per 1 applicable pin		-5			
F	Mean output	IOMH(1)	Ports 0, 1, 2, 3, A, B,	CMOS output select		-5			1
	current	i i i i i i i i i i i i i i i i i i i	C, E	Per 1 applicable pin		-7.5			
Ħ	(Note 1-1)	IOMH(2)	P71, P72, P73	Per 1 applicable pin		-3			
arre	Total output	ΣIOAH(1)	Port 0, P14 to P17	Total of all applicable pins		-25			
o t	current	Σ IOAH(2)	Port 3, A	Total of all applicable pins		-25			
el outp		∑IOAH(3)	Port 0, 3, A	Total of all applicable pins		-45			
High level output current		∑IOAH(4)	P14 to P17 Port 2 P10 to P12 P52	Total of all applicable pins		-25			
		∑IOAH(5)	P10 to P13,PE3 Port B, C, PE0 to PE2	Total of all applicable pins		-25			
		∑IOAH(6)	Port 2, B, C, E	Total of all applicable pins		-45			
		∑IOAH(7)	P10 to P13 P71, P72, P73	Total of all applicable pins		-5			-
	Peak output	IOPL(1)	Ports 0, 1, 2, 3, A, B,			-5			-
	current		C, E	Per 1 applicable pin				20	m/
		IOPL(2)	Port 7, 8 XT2, CF2	Per 1 applicable pin				10	
	Mean output current	IOML(1)	Ports 0, 1, 2, 3, A, B, C, E	Per 1 applicable pin				15	
nt	(Note 1-1)	IOML(2)	Port 7, 8 XT2, CF2	Per 1 applicable pin				7.5	
urre	Total output	∑IOAL(1)	Port 0, P14 to P17	Total of all applicable pins				45	
t l	current	Σ IOAL(2)	Port 3, A	Total of all applicable pins				45	
el outp		∑IOAL(3)	Port 0, 3, A P14 to P17	Total of all applicable pins				80	
Low level output current		∑IOAL(4)	Port 2 P10 to P13, PE3	Total of all applicable pins				45	
		∑IOAL(5)	Port B, C, PE0 to PE2	Total of all applicable pins				45	
		∑IOAL(6)	Port 2, B, C,E P10 to P13	Total of all applicable pins				80	
		∑IOAL(7)	Port 7, XT2	Total of all applicable pins				15	
		$\Sigma IOAL(8)$	Port 8, CF2	Total of all applicable pins Total of all applicable pins				15	
		$\Sigma IOAL(9)$	Port 7, 8, XT2, CF2	Total of all applicable pins				20	
Powe	er dissipation	Pd max(1)	QFP80	• Ta=-30 to +70°C				T.B.D	
				Package only Ta=-30 to +70°C					
				Package with thermal					
				resistance board				T.B.D	
				(Note 1-2)					
		Pd max(2)	TQFP80J	Ta=-30 to +70°C Package only				T.B.D	m۷
				• Ta=-30 to +70°C					
				Package with thermal resistance board				T.B.D	
	ating ambient	Topr		(Note 1-2)		-30		+70	
	erature ge ambient	Tstg							°C
Jiuld	ge ambient erature	1319				-55		+125	

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.

Allowable Operating Conditions at Ta=-30 to $+70^{\circ}$ C, $V_{SS}1=V_{SS}2=V_{SS}3=0V$

Parameter Symbol Pin/Remarks Conditions $V_{DD}[V]$ min typ m Operating supply $V_{DD}(1)$	ax	
Operating supply Vpp(1) Vpp(1=Vpp2 • 0.245µs <tcyc<200µs 3.0<="" th="" =""><th></th><th>unit</th></tcyc<200µs>		unit
3.0 Specialing supply 100.1002 Sizilation 3.0	5.5	
voltage (Note 2-1) V _{DD} (2) =V _{DD} 3 • 0.735μs≤tCYC≤200μs 2.4	5.5	
Memory sustaining supply voltage VHD VDD1 • RAM and register contents sustained in HOLD mode.	5.5	
High level input voltage V _{IH} (1) Ports 0, 1, 2, 3, 8, A, B, C, E, P71, P72, P73 P70 port input /interrupt side • Output disabled 2.4 to 5.5 P71, P72, P73 P70 port input /interrupt side	V _{DD}	
V _{IH} (2) Port 70 watchdog timer side • Output disabled 2.4 to 5.5 0.9V _{DD}	V _{DD}	V
V _{IH} (3) XT1, XT2, CF1, CF2, RES 2.4 to 5.5 0.75V _{DD}	V _{DD}	
Low level input voltage V _{IL} (1) Ports 0, 1, 2, 3, 8, • Output disabled	V _{DD} +0.4	
	V _{DD} -1.0	
V _{IL} (3) XT1, XT2, CF1, CF2, RES 2.4 to 5.5 V _{SS} 0.25	V_{DD}	
Instruction cycle tCYC 3.0 to 5.5 0.245	200	
time (Note 2-1) (Note 2-2) 2.4 to 5.5 0.735	200	μs
External system clock frequency FEXCF CF1 • CF2 pin open • System clock frequency division ratio = 1/1	12	
• External system clock duty = 50±5% 2.4 to 5.5 0.1	4	
CF2 pin open System clock frequency division ratio = 1/2	24	MHz
• External system clock duty 2.4 to 5.5 0.2 = 50±5%	8	
Oscillation frequency range FmCF(1) CF1, CF2 • 12MHz ceramic oscillation • See Fig. 1.		
(Note 2-3) FmCF(2) CF1, CF2 • 4MHz ceramic oscillation • See Fig. 1.		
FmVMRC(1) • Frequency variable RC source oscillation • VMRAJ2 to 0 = 4 • VMFAJ2 to 0 = 0 • VMSL4M = 0	1	MHz
FmVMRC(2) • Frequency variable RC source oscillation • VMRAJ2 to 0 = 4 • VMFAJ2 to 0 = 0 • VMSL4M=1		
FmRC • Internal fast RC oscillation 2.4 to 5.5 500		
FsRC • Internal slow RC oscillation 2.4 to 5.5 50		kHz
FsX'tal XT1, XT2 • 32.768kHz crystal oscillation	7	

Note 2-1: V_{DD} must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Note 2-3: See Table 1, 2 for the oscillation constants

Continued on next page.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Continued from preceding page.

Doromotor	Cumbal	Din/Domorles	Conditions			Specific	cation	
Parameter	Parameter Symbol Pin/Remarks Conditions		V _{DD} [V]	min	typ	max	unit	
Frequency variable RC oscillation	OpVMRC(1)		• VMSL4M=0	3.0 to 5.5	8	10	12	MHz
usable range	OpVMRC(2)		• VMSL4M=1	2.4 to 5.5	3.5	4	4.5	IVITZ
Frequency variable RC oscillation	VmADJ(1)		1 step of VMRAJn (large range)	2.4 to 5.5	8	24	64	0/
adjustment range	VmADJ(2)		1 step of VMFAJn (small range)	2.4 to 5.5	1	4	8	%

Electrical Characteristics at Ta=-30 to +70°C, $V_{SS}1=V_{SS}2=V_{SS}3=0V$

Doromotor	Symbol	Pin/Remarks	Conditions			Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3, 7, 8, A, B, C, E	Output disabled Pull-up resistor off V _{IN} =V _{DD} (Including output Tr's off leakage current)	2.4 to 5.5			1	
	I _{IH} (3)	RES	• V _{IN} =V _{DD}	2.4 to 5.5			1	Ì
	I _{IH} (4)	XT1, XT2 CF1, CF2	Configured as input ports VIN=VDD	2.4 to 5.5			1	
	I _{IH} (5)	CF1	• V _{IN} =V _{DD}	2.4 to 5.5			15	
Low level input current	l ₁ L(1)	Ports 0, 1, 2, 3, 7, 8, A, B, C, E	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.4 to 5.5	-1			μΑ
	I _{IL} (2)	RES	• V _{IN} =V _{SS}	2.4 to 5.5	-1			
	I _{IL} (3)	XT1, XT2 CF1, CF2	Configured as input ports VIN=VSS	2.4 to 5.5	-1			
	I _{IL} (4)	CF1	• V _{IN} =V _{SS}	2.4 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2, 3,	• I _{OH} =-1.0mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)	A, B, C	• I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		• I _{OH} =-0.2mA	2.4 to 5.5	V _{DD} -0.4			
	V _{OH} (4)	P71, P72, P73	• I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (5)		• I _{OH} =-0.2mA	2.4 to 5.5	V _{DD} -0.4			
	V _{OH} (6)	P30, P31, Port A	• I _{OH} =-10mA	4.5 to 5.5	V _{DD} -1.5			
	V _{OH} (7)	(using as PWM)	• I _{OH} =-1.6mA	3.0 to 5.5	V _{DD} -0.4			٧
	V _{OH} (8)		• I _{OH} =-1.0mA	2.4 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1, 2, 3,	• I _{OL} =10mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)	A, B, C, E	• I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (3)		• I _{OL} =1.0mA	2.4 to 5.5			0.4	
	V _{OL} (4)	Port 7, 8	• I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (5)	XT2, CF2	• I _{OL} =1.0mA	2.4 to 5.5			0.4	
Pull-up resistance	Rpu	Ports 0, 1, 2, 3, 7, A, B, C, E	• V _{OH} =0.9V _{DD}	4.5 to 5.5 2.4 to 4.5	15 25	40 70	70 150	kΩ
Hysteresis voltage	VHYS	Ports 0, 1, 2, 3, 7, A, RES		2.4 to 5.5		0.1V _{DD}		V
Pin capacitance	СР	All pins	f=1MHz Ta=25°C For pins other than that under test: V _{IN} =V _{SS}	2.4 to 5.5		10		pF

Serial I/O Characteristics at Ta=-30 to +70°C, $V_{SS}1=V_{SS}2=V_{SS}3=0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

	Par	ameter	Symbol	Pin/Remarks	Conditions			Spec	fication	
	Fai	ametei	Symbol	FIII/INGIIIAINS	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	• See Fig. 6.		2			
		Low level pulse width	tSCKL(1)				1			
	Slock	High level	tSCKH(1)				1			
	Input clock	pulse width	tSCKHA(1)		Continuous data transmission/reception mode	2.4 to 5.5	4			tCYC
lock					• See Fig. 6. (Note 4-1-2)					
Serial clock		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected		4/3			
Ø	¥	Low level pulse width	tSCKL(2)		• See Fig. 6.			1/2		
	cloc	High level	tSCKH(2)					1/2		
	Output clock	pulse width	tSCKHA(2)		Continuous data transmission/reception mode CMOS output selected See Fig. 6.	2.4 to 5.5	tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	tSCK
ial ut	Data	setup time	tsDI	SB0(P11), SI0(P11)	Must be specified with respect to rising edge		0.03			
Serial	Data	hold time	thDI	,	of SIOCLK. • See Fig. 6.	2.4 to 5.5	0.03			
	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-3)				(1/3)tCYC +0.05	
Serial output	rial output Input		tdD0(2)		Synchronous 8-bit mode (Note 4-1-3)	2.4 to 5.5			1tCYC +0.05	μs
Se	Output clock		tdD0(3)		(Note 4-1-3)				(1/3)tCYC +0.05	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

Note 4-1-2: When using serial clock input under continuous data transmission/reception mode, the time from SI0RUN is set while serial clock is "H" to the first falling edge of serial clock must be longer than tSCKHA.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

	-			5: (5	0 1111			Sp	ecification	
	Par	ameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(3)	SCK1(P15)	• See Fig. 6.	2.4 to 5.5	2			
	Input clock	Low level	tSCKL(3)				1			
	onto	pulse width								tCYC
충	宣	High level	tSCKH(3)				1			1010
Serial clock		pulse width								
Seria	송	Frequency	tSCK(4)	SCK1(P15)	CMOS output	2.4 to 5.5	2			
0,	Output clock	Low level	tSCKL(4)		selected			1/2		
	tput	pulse width			• See Fig. 6.					tSCK
	õ	High level	tSCKH(4)					1/2		
	Doto	pulse width	tsDI(2)	SB1(P14),	Must be specified	2.4 to 5.5				
ont	Dala	setup time	ISDI(2)	SI1(P14),	with respect to	2.4 10 5.5	0.03			
Serial input	Data	hold time	thDI(2)]	rising edge of					
Seria	Data		(2)		SIOCLK.		0.03			
0,					• See Fig. 6.					
	Outp	ut delay time	tdD0(4)	SO1(P13),	Must be specified	2.4 to 5.5				
				SB1(P14)	with respect to					
					falling edge of					μs
Ħ					SIOCLK.					
outp					Must be specified				(1/3)tCYC	
Serial output					as the time to the				+0.05	
Se					beginning of output state					
					change in open					
					drain output mode.					
					• See Fig. 6.					

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta=-30 to +70°C, $V_{SS}1\!=\!V_{SS}2\!=\!V_{SS}3\!=\!0V$

	0	D' (D	Quality and			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level	tPIH(1)	INT0(P70)	Interrupt source flag can be set.					
pulse width	tPIL(1)	INT1(P71)	Event inputs for timer 0 or 1 are					
		INT2(P72)	enabled.	2.4 to 5.5	1			
		INT3(P73)		2.4 10 5.5	'			
		INT4(P20 to P23)						
		INT5(P24 to P27)						
	tPIH(2)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(2)	noise filter time	Event inputs for timer 0 are	2.4 to 5.5	2			
		constant is 1/1	enabled.					tCYC
	tPIH(3)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(3)	noise filter time	Event inputs for timer 0 are	2.4 to 5.5	64			
		constant is 1/32	enabled.					
	tPIH(4)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(4)	noise filter time	Event inputs for timer 0 are	2.4 to 5.5	256			
		constant is 1/128	enabled.					
	tPIH(5)	NKIN(P72)	High speed clock counter	2.4 to 5.5	1/12			
	tPIL(5)		countable	2.4 (0 5.5	1/12			
	tPIL(6)	RES	External reset input mode	2.4 to 5.5	200			
			Resetting is enabled	2.4 10 5.5	200			μs

AD Converter Characteristics at VSS1=VSS2=VSS3=0V

<12bits AD Converter Mode / Ta=-30 to +70°C>

Dorometer	Cumbal	Pin/Remarks	Conditions		Specification			
Parameter	Symbol Pin/Remarks		Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P80) to		3.0 to 5.5		12		bit
Absolute accuracy	ET	AN7(P87)	(Note 6-1)	3.0 to 5.5			±16	LSB
Conversion time	tCAD	AN8(PB0) to AN15(PB7)	See Conversion time calculation	4.0 to 5.5	32		115	
		ANTO(PBT)	formulas. (Note 6-2)	3.0 to 5.5	64		115	μs
Analog input voltage range	VAIN			3.0 to 5.5	V _{SS}		V_{DD}	V
Analog port input	IAINH		• VAIN=V _{DD}	3.0 to 5.5			1	
current	IAINL		• VAIN=V _{SS}	3.0 to 5.5	-1			μA

<8bits AD Converter Mode / Ta=-30 to +70°C>

Parameter	Symbol Pin/Remarks		Conditions	Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P80) to		3.0 to 5.5		8		bit
Absolute accuracy	ET	AN7(P87)	(Note 6-1)	3.0 to 5.5			±1.5	LSB
Conversion time	tCAD	AN8(PB0) to AN15(PB7)	See Conversion time calculation	4.0 to 5.5	20		95	
		ANTO(FB7)	formulas. (Note 6-2)	3.0 to 5.5	40		95	μs
Analog input voltage range	VAIN			3.0 to 5.5	V _{SS}		V_{DD}	V
Analog port input	IAINH		• VAIN=V _{DD}	3.0 to 5.5			1	
current	IAINL		• VAIN=V _{SS}	3.0 to 5.5	-1			μΑ

Conversion time calculation formulas:

12bits AD Converter Mode : $TCAD(Conversion\ time) = ((52/(AD\ division\ ratio))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode : $TCAD(Conversion\ time) = ((32/(AD\ division\ ratio))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio	AD conversion time (TCAD)		
(FmCF)			(tCYC)	(ADDIV)	12bit AD	8bit AD	
CF-12MHz	4.0V to 5.5V	1/1	250ns	1/8	34.8μs	21.5μs	
CF-12IVIFIZ	3.0V to 5.5V	1/1	250ns	1/16	69.5μs	42.8µs	
CF-4MHz	3.0V to 5.5V	1/1	750ns	1/8	104.5μs	64.5μs	

Note 6-1: The quantization error $(\pm 1/2LSB)$ must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

Power-on Reset (POR) Characteristics at Ta=-30 to +70°C, VSS1=VSS2=VSS3=0V

Description	Oh al	Pin/Remarks	Conditions r			Specific	ation	
Parameter	Symbol Pin/Remarks Conditions Option selected voltage		min	typ	max	unit		
POR release	PORRL		Select from option.	1.67V		1.67		
voltage			(Note 7-1)	1.97V		1.97		
				2.07V		2.07		
				2.37V		2.37		
				2.57V		2.57		V
				2.87V		2.87		•
				3.86V		3.86		
				4.35V		4.35		
Detection voltage unknown state	POUKS		• See Fig. 8. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		Power supply rise time from 0V to x V.				100	ms

Note7-1: The POR release level can be selected out of 7 levels only when the LVD reset function is disabled.

Note7-2: POR is in an unknown state before transistors start operation.

Low Voltage Detection Reset (LVD) Characteristics at Ta=-30 to +70°C, VSS1=VSS2=VSS3=0V

Parameter	Cumbal	Pin/Remarks	Conditions			Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset	LVDET		Select from option.	1.91V		1.91		
Voltage			(Note 8-1)	2.01V		2.01		
(Note 8-2)			(Note 8-3) • See Fig. 9.	2.31V		2.31		
			• See Fig. 9.	2.51V		2.51		V
				2.81V		2.81		
				3.79V		3.79		
				4.28V		4.28		
LVD hysteresis width	LVHYS			1.91V		55		
				2.01V		55		
				2.31V		55		
				2.51V		55		mV
				2.81V		60		
				3.79V		65		
				4.28V		65		
Detection voltage unknown state	LVUKS		• See Fig. 9. (Note 8-4)			0.7	0.95	٧
Low voltage detection	TLVDW		• LVDET-0.5V		_	_	_	
minimum width (Reply sensitivity)			• See Fig. 10.		0.2			ms

Note8-1: The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled.

Note8-4: LVD is in an unknown state before transistors start operation.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Consumption Current Characteristics at Ta = -30 °C to +70 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pin/	Conditions			Specific	ation	
Faiametei	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Current consumption during normal	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	FmCF=12MHz Ceramic resonator oscillation FsX'tal=32.768kHz crystal oscillation Frequency variable RC oscillation stopped.	4.5 to 5.5		8.4	22.1	
operation (Note 9-1)			Internal RC oscillation stopped. System clock: CF oscillation 12MHz Divider: 1/1	3.0 to 3.6		4.9	12.1	
	IDDOP(2)		FmCF=4MHz Ceramic resonator oscillation FsX'tal=32.768kHz crystal oscillation Frequency variable RC oscillation stopped.	4.5 to 5.5		3.5	10.0	
			Internal RC oscillation stopped. System clock: CF oscillation 4MHz Divider: 1/1	2.4 to 3.6		2.8	6.3	
	IDDOP(3)		FmCF=0Hz (No oscillation) FsX'tal=32.768kHz crystal oscillation FmVMRC=10MHz Frequency variable RC oscillation	4.5 to 5.5		6.9	16.6	mA
			Internal RC oscillation stopped. System clock: Frequency variable RC oscillation 10MHz Divider :1/1	2.4 to 3.6		4.2	101	
			FmCF=0Hz (No oscillation) FsX'tal=32.768kHz crystal oscillation FmVMRC=4MHz Frequency variable RC oscillation	4.5 to 5.5		2.8	8.5	
			Internal RC oscillation stopped. System clock: Frequency variable RC oscillation 4MHz Divider :1/1	2.4 to 3.6		2.5	5.4	
	IDDOP(5)		FmCF=0Hz (No oscillation) FsX'tal=32.768kHz crystal oscillation Frequency variable RC oscillation stopped.	4.5 to 5.5		400	1000	
			Internal RC oscillation=Fast RC oscillation System clock: Fast RC oscillation Divider :1/1	2.4 to 3.6		300	600	^
	• F		FmCF=0Hz (No oscillation) FsX'tal=32.768kHz crystal oscillation Frequency variable RC oscillation stopped.	4.5 to 5.5		74	269.4	μΑ
		Internal RC oscillation stopped.System clock: 32.768kHzDivider :1/1		2.4 to 3.6		26.1	110.1	

Note 9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pin/	Conditions			Specific	ation	ı
Tarameter	Cymbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Current consumption during HALT	IDDHALT(1)	HALT mode • FmCF=12MHz Ceramic resonator oscillation • FsX'tal=32.768kHz crystal oscillation	4.5 to 5.5		3.3	8.4		
mode (Note 9-1)			Frequency variable RC oscillation stopped. Internal RC oscillation stopped. System clock: CF oscillation 12MHz Divider: 1/1	3.0 to 3.6		1.7	4.3	
	IDDHALT(2)		HALT mode FmCF=4MHz Ceramic resonator oscillation FsX'tal=32.768kHz crystal oscillation Frequency variable RC oscillation stopped.	4.5 to 5.5		0.3	4.1	
			Internal RC oscillation stopped. System clock: CF oscillation 4MHz Divider: 1/1	2.4 to 3.6		0.1	1.8	
	IDDHALT(3)		HALT mode • FmCF=0Hz (No oscillation) • FsX'tal=32.768kHz crystal oscillation • FmVMRC=10MHz Frequency variable RC oscillation	4.5 to 5.5		2.3	5.8	mA
			Internal RC oscillation stopped. System clock: Frequency variable RC oscillation 10MHz Divider :1/1	2.4 to 3.6		1.3	3.2	
	IDDHALT(4)		HALT mode • FmCF=0Hz (No oscillation) • FsX'tal=32.768kHz crystal oscillation • FmVMRC=4MHz Frequency variable RC oscillation	4.5 to 5.5		1.0	2.5	
			Internal RC oscillation stopped. System clock: Frequency variable RC oscillation 4MHz Divider :1/1	2.4 to 3.6		0.5	1.3	
	IDDHALT(5)		HALT mode • FmCF=0Hz (No oscillation) • FsX'tal=32.768kHz crystal oscillation	4.5 to 5.5		200	500	
			Frequency variable RC oscillation stopped. Internal RC oscillation=Fast RC oscillation System clock: Fast RC oscillation Divider :1/1	2.4 to 3.6		100	200	
	IDDHALT(6)		HALT mode • FmCF=0Hz (No oscillation) • FsX'tal=32.768kHz crystal oscillation	4.5 to 5.5		57.2	230.9	μА
	Internal RC oscillation s System clock: 32.768kh		Frequency variable RC oscillation stopped. Internal RC oscillation stopped. System clock: 32.768kHz Divider :1/1	2.4 to 3.6		13.6	83.2	

Note 9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Continued on next page.

Continued from preceding page

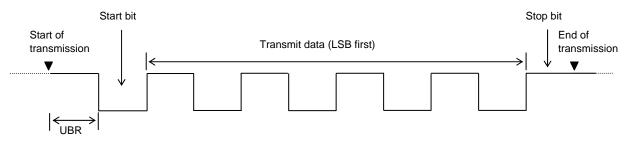
Parameter	Cumbal	Pin/	Conditions			Specific	ation	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Current consumption during HOLD	IDDHOLD(1)	V _{DD} 1 = V _{DD} 2 = V _{DD} 3	HOLD mode CF1=V _{DD} or open (when using external clock)	4.5 to 5.5		0.1	52	
mode (Note 9-1)		0003	(when using external clock)	2.4 to 3.6		0.04	22	
Current consumption	IDDHOLD(3)		Date/time clock HOLD mode • CF1=V _{DD} or open (when using external clock)	4.5 to 5.5		49.9	213	μΑ
during Date/time			FmX'tal=32.768kHz crystal oscillation Normal mode	2.4 to 3.6		9.6	73.4	
clock HOLD mode	IDDHOLD(4)		Date/time clock HOLD mode • CF1=V _{DD} or open (when using external clock)	4.5 to 5.5		1.0	94.3	
(Note 9-1)			FmX'tal=32.768kHz crystal oscillation Power save mode	2.4 to 3.6		0.76	39.3	

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

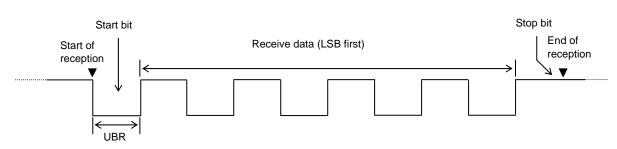
F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol Pin/Remarks		Conditions		Specification			
raiailietei S	Symbol	Symbol Fill/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Onboard programming current	IDDFW	V _{DD} 1	Current of the Flash module	3.0 to 5.5		5	10	mA
Programming	tFW(1)		Erase time	2.0 to F.F.		20	30	ms
time	ime tFW(2)		Program time	3.0 to 5.5		40	60	μs

UART (Full Duplex) Operating Conditions at Ta = -30°C to +70°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$


Parameter	Symbol	Pin/Remarks	Conditions		Specification				
			Conditions	V _{DD} [V]	min	typ	max	unit	
Transfer rate	UBR	UTX1(P00), URX1(P01) UTX2(P02), URX2(P03)		2.4 to 5.5	16/3		8192/3	tCYC	

Data length: 7, 8, and 9 bits (LSB first)


Stop bits: 1 bit (2-bit in continuous data transmission)

Parity bits: None

Example of Continuous 8-bit Data Transmission Mode Processing (first transmit data=55H)

Example of Continuous 8-bit Data Reception Mode Processing (first receive data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1. Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

Nominal	Mandan Nama	Vendor Name Oscillator Name	Circuit Constant				Operating Voltage		lation tion Time	Damada
Frequency	vendor Name	Oscillator Name	C1	C2	Rf	Rd	Range	typ	max	Remarks
			[pF]	[pF]	$[\Omega]$	$[\Omega]$	[V]	[ms]	[ms]	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a SANYOdesignated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table2. Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

Nominal		Oscillator	Circuit Constant			Operating Voltage		illation ation Time	Damada	
Frequency	Vendor Name	Name	C1	C2	Rf	Rd	Range	typ	max	Remarks
			[pF]	[pF]	$[\Omega]$	[Ω]	[V]	[s]	[s]	
32.768kHz										

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

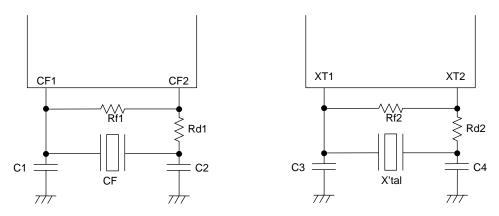
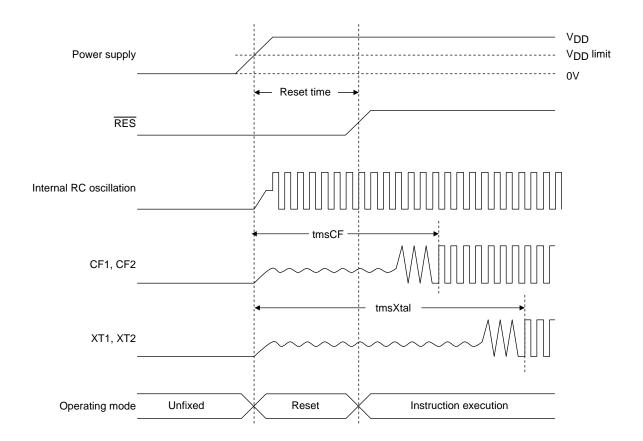



Figure 1 Ceramic Oscillation Circuit

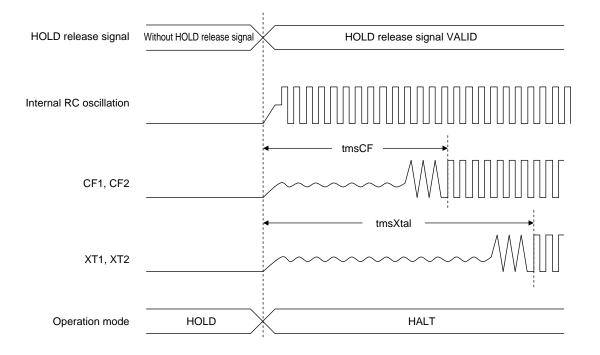
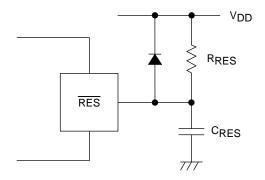

Figure 2 Crystal Oscillation Circuit

Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stable Time

HOLD Release Signal and Oscillation Stable Time

Figure 4 Oscillation Stabilization Times

Note:

External circuits for reset may vary depending on the usage of POR and LVD. Please refer to the user's manual for more information.

Figure 5 Reset Circuit

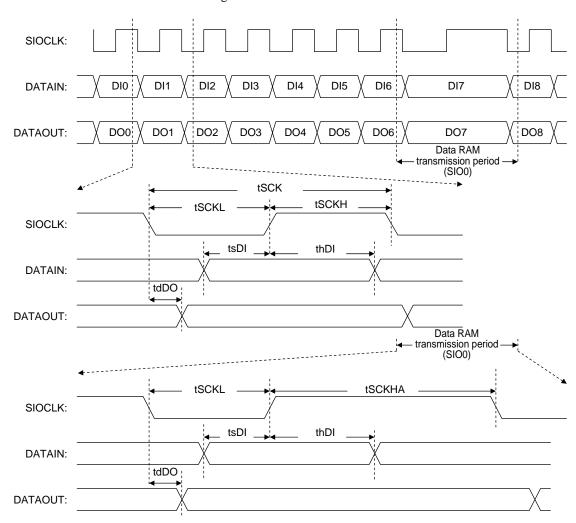


Figure 6 Serial I/O Output Waveforms

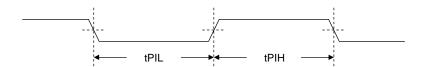


Figure 7 Pulse Input Timing Signal Waveform

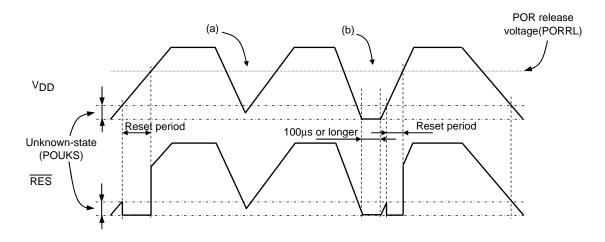


Figure 8 Waveform observed when only POR is used (LVD not used) (RESET pin: Pull-up resistor RRES only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.

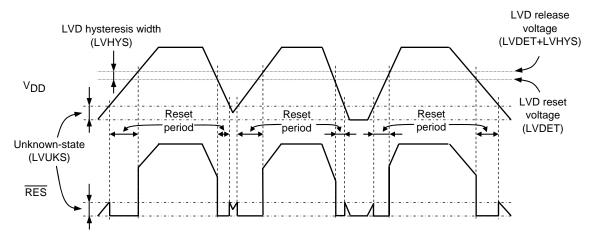


Figure 9 Waveform observed when both POR and LVD functions are used (RESET pin: Pull-up resistor RRES only)

- Resets are generated both when power is turned on and when the power level lowers.
- A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.

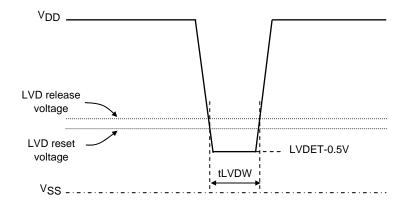


Figure 10 Low voltage detection minimum width (Example of momentary power loss/Voltage variation waveform)

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2010. Specifications and information herein are subject to change without notice.