

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LC87F7932B —

CMOS IC 32K-byte FROM and 2048-byte RAM integrated 8-bit 1-chip Microcontroller

Overview

The LC87F7932B is an 8-bit microcontroller that, centered around a CPU running at a minimum bus cycle time of 250ns, integrates on a single chip a number of hardware features such as 32K-byte flash ROM (onboard programmable), 2048-byte RAM, an on-chip debugger, an LCD controller/driver, two sophisticated 16-bit timers/counters (may be divided into 8-bit timers), two 16-bit timers/counters (may be divided into 8-bit timers/counters or 8-bit PWMs), four 8-bit timers with a prescaler, a real time clock function (RTC), a base timer serving as a time-of-day clock, a synchronous SIO interface with automatic transfer function, an asynchronous/synchronous SIO interface, a UART interface (full duplex), a 7-channel AD converter with a 12-/8-bit resolution selector, a high-speed clock counter, a system clock frequency divider, an internal reset circuit, and a 21-source 10-vector interrupt function.

Features

- ■Flash ROM
 - Capable of on-board programming with a wide supply voltage range of 3.0V to 5.5V
 - 128-byte block erase
 - 32768×8 bits

■RAM

- 2048×9 bits
- ■Minimum Bus Cycle Time
 - 250ns (4MHz) V_{DD}=2.4V to 3.6V

Note: The bus cycle time here refers to the ROM read speed.

- ■Minimum Instruction Cycle Time (tCYC)
 - 750ns (4MHz) V_{DD}=2.4V to 3.6V
 - * This product is licensed from Silicon Storage Technology, Inc. (USA), and manufactured and sold by SANYO Semiconductor Co., Ltd.
 - Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
 - Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■Operating Temperature Range

• -40°C to +85°C

■Ports

• Normal withstand voltage I/O ports

Ports whose input/output can be programmed in 1-bit units: 21 (P0n, P1n, P30, P70 to P73)

Multiplexed functions

Input ports (for debugger): 3 (DBGP0 (P05) to DBGP2 (P07))

LCD ports (segment output): 8 (P1n)

• LCD ports/general purpose I/O ports

Segment output: 32 (S00 to S31)

Common output: 4 (COM0 to COM3)

Bias power supply for LCD driving 5 (V1 to V3, CUP1, CUP2)

Multiplexed functions

Input/output ports: 36 (LPAn, LPBn, LPCn, LPL0 to LPL3, P1n)

• Oscillator pins: 4 (CF1, CF2, XT1, XT2)

• Reset pin: 1 (RES)

• Power supply: 5 (V_SS1, V_SS2, V_{DD}1, V_{DD}2, V2)

■LCD Controller

(1) Seven display modes are available

- (2) Duty: 1/3 duty, 1/4 duty
- (3) Bias: 1/2 bias, 1/3 bias
- (4) Segment/common output can be switched to general purpose I/O ports.
- (5) LCD power range

1) 1/3 bias V1: 1.2V to 1.8V

V2: 2.4V to 3.6V V3: 3.6V to 5.4V

An LCD panel that supports the V2 (= V_{DD}) × 1.5[V] must be used when 1/3 bias is selected.

If the supply voltage VDD is 3.0V, for example, use an LCD panel that supports 4.5V.

2) 1/2 bias V1: 1.2V to 1.8V

V2: 2.4V to 3.6V V3: 2.4V to 3.6V

(Connect V2 and V3 externally.)

An LCD panel that supports the V2 (=V_{DD})[V] must be used when 1/2 bias is selected.

If the supply voltage V_{DD} is 3.0V, for example, use an LCD panel that supports 3.0V.

■Timers

• Timer 0: 16 bit timer/counter with a capture register

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) \times 2 channels

Mode 1: 8 bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) + 8-bit counter (with an 8-bit capture register)

Mode 2: 16 bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16 bit counter (with a 16 bit capture register)

• Timer 1: 16 bit timer/counter that supports PWM/toggle output

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle output) + 8-bit timer/counter (with toggle output)

Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels

Mode 2: 16 bit timer/counter with an 8-bit prescaler (with toggle output)

(Toggle outputs also from the low-order 8 bits)

Mode 3: 16 bit timer with an 8-bit prescaler (with toggle output)

(The low-order 8 bits can be used as a PWM.)

- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Base Timer
 - (1) The clock can be selected from any of the following:

Subclock (32.768kHz crystal oscillator/low-speed RC oscillator), system clock, and timer 0 prescaler output.

(2) Interrupts can be generated at five specified time intervals.

■High-speed Clock Counter

- (1) Capable of counting a clock with a maximum clock rate of 8MHz (at a main clock of 4MHz).
- (2) Real-time output

■Serial Interface

- SIO0: 8-bit synchronous serial interface
 - (1) Synchronous 8-bit serial I/O (2- or 3-wire configuration, 4/3 to 512/3 tCYC transfer clock rate)
 - (2) Continuous data transfer (variable length data transfer in bit units from 1 to 256 bits, 4/3 to 512/3 tCYC transfer clock rate)
 - (3) Bi-phase modulation

Manchester/Bi-phase-Space data transfer

- (4) LSB first/MSB first selectable
- (5) SPI function: HOLD/X'tal HOLD mode release function upon receipt of a 1-byte (8-bit clock).
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clock rate)
 - Mode 1: Asynchronous serial I/O (half duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrate)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clock rate)
 - Mode 3: Bus mode 2 (start detection, 8 data bits, stop detection)

■UART

- Full duplex
- Data length: 7/8/9 bits selectable
- 1 stop bit (2 bits in continuous data transmission)
- Built-in baudrate generator
- Operating mode: Programmable transfer mode, fixed-rate transfer mode
- Transfer data conversion: Normal (NRZ), Manchester encoding
- ■AD Converter: 12 bits/8 bits × 7 channels
 - 12-/8-bit AD converter resolution selectable
- ■Remote Control Receiver Circuit (multiplexed with the P73/INT3/T0IN pin)
 - Noise rejection function (Noise filter time constant selectable from 1/32/128 tCYC)

■Watchdog Timer

- Generation of interrupt or system reset selectable
- Two types of watchdog timer
 - (1) Watchdog timer using an external RC circuit
 - (2) Watchdog timer using the microcontroller's base timer
- Detection intervals (1/2/4/8 seconds) can be selected for the watchdog timer that uses the base timer by configuring options.

■Buzzer Output

• Generates buzzer output from P17 using the base timer.

■Real Time Clock (RTC)

- (1) Uses the base timer to count the calendar years, months, days, hours, minutes, and seconds.
- (2) Calendar counts up to December 31, 2799 and calculates leap years automatically
- (3) The RTC uses the Gregorian calendar, which maintains GMT (Greenwich Mean Time).

■Internal Reset Function

- Power-on-reset (POR) function
 - (1) The POR causes a system reset only when power is turned on.

■Interrupts:

- 21 sources, 10 vectors
- (1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt request of the level equal to or lower than the current interrupt is not accepted.
- (2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the lowest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L
4	0001BH	H or L	INT3/base timer/RTC
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1-receive
8	0003BH	H or L	SIO1/UART-send
9	00043H	H or L	ADC/T6/T7/SPI
10	0004BH	H or L	Port 0/T4/T5

- Priority level: X > H > L
- For equal priority levels, the interrupt with the lowest vector address is given priority.

■Subroutine Stack Levels:

• Up to 1024 levels max. (Stack is allocated in RAM.)

■High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
24 bits ÷ 16 bits
16 tCYC execution time)
24 bits ÷ 16 bits
12 tCYC execution time)
12 tCYC execution time)

■Oscillator Circuits

- On-chip high-speed RC oscillator: For system clock (500kHz typ)
- On-chip low-speed RC oscillator: For system clock (50kHz typ)
- CF oscillator: For system clock, Rf built in, Rd external
- Crystal oscillator: For low-speed system clock, Rf built in
- On-chip variable modulation frequency RC oscillator (VMRC): For system clock
 - (1) Adjustable in ±4% (typ) step from a selected center frequency
 - (2) Can measure the frequency of the source oscillator clock using an input signal from the XT1 pin as a reference.

■System Clock Divider

- Low consumption current operation possible
- The minimum instruction cycle can be selected from among 750ns, 1.5μs, 3.0μs, 6.0μs, 12μs, 24μs, 48μs, 96μs, and 192μs (at a main clock rate of 4MHz).

■System Clock Output

• The system clock can be output from the P04 pin.

■Standby Function

• HALT mode: HALT mode is used to reduce power consumption.

Halts instruction execution while allowing the peripheral circuits to continue operation.

(Some serial transfer functions are suspended.)

- (1) Oscillators do not stop automatically.
- (2) Released by a system reset or occurrence of an interrupt
- HOLD mode: HOLD mode is used to reduce power consumption.

Suspends instruction execution and operation of the peripheral circuits.

- (1) CF oscillator, RC oscillators, crystal oscillator, and VMRC oscillator stop automatically.
- (2) There are five ways of releasing HOLD mode.
 - 1) Low level input to the reset pin
 - 2) Watchdog timer interrupt
 - 3) Specified level input to at least one of INT0, INT1, and INT2 pins
 - 4) Port 0 interrupt
 - 5) SPI interrupt by receiving 1-byte (8-bit clock)
- X'tal HOLD mode: X'tal HOLD mode is used to reduce power consumption.

Suspends instruction execution and the operation of the peripheral circuits except the base timer.

- (1) CF oscillator, RC oscillators, and VMRC oscillator stop automatically.
- (2) The state of the crystal oscillator when X'tal HOLD mode is entered is retained.
- (3) There are seven ways of releasing X'tal HOLD mode.
 - 1) Low level input to the reset pin
 - 2) Watchdog timer interrupt
 - 3) Specified level input to at least one of INT0, INT1, and INT2 pins
 - 4) Port 0 interrupt
 - 5) Base-timer interrupt
 - 6) RTC interrupt
 - 7) SPI interrupt by receiving 1-byte (8-bit clock)

■On-chip Debugger

• Supports software debugging with the IC mounted on the target board.

■Package Form

- QIP64E (14×14) (Lead-and-halogen-free product)
- TOFP64J (7×7) (Lead-and-halogen-free product)
- SQFP64 (10×10) (Lead-and-halogen-free product)

■Development Tools

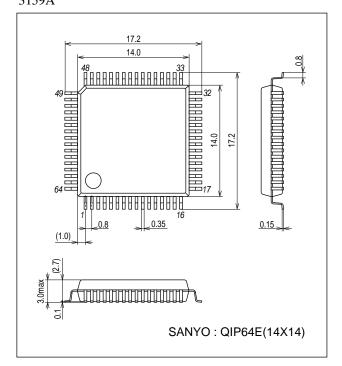
• On-chip debugger: TCB87 TypeB+LC87F7932B

■Flash ROM Programming Boards

Package	Programming Boards
QIP64E (14×14)	W87F70256Q
TQFP64J (7×7)	W87F70256TQ7
SQFP64 (10×10)	W87F79256SQ

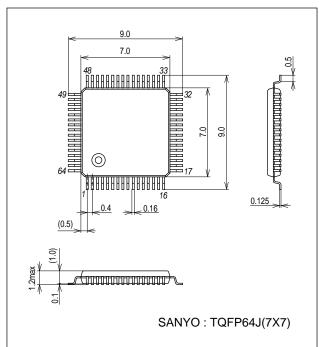
■Flash ROM Programmer

Maker		Model	Supported Version	Device	
	Single	AF9708/AF9709/AF9709B	Rev 03.04 or later		
1	Canad	AF9723 (Main unit)	Rev 0x.xx or later	LC87F2832A	
(I difficilly Ando Electric Co., Etc.)	Ganged	AF9833 (Unit)	Rev 0x.xx or later		
	Single/ganged	SKK/SKK Type B	Application Version		
CANIVO	olingle/gariged	(SANYO FWS)	1.05A or later	LC87F7932B	
Flash Support Group, Inc. (Formerly Ando Electric Co., Ltd.)	Onboard	SKK/SKK Type B	Chip Data Version	LC67F7932B	
	Single/ganged	(SANYO FWS)	2.25 or later		

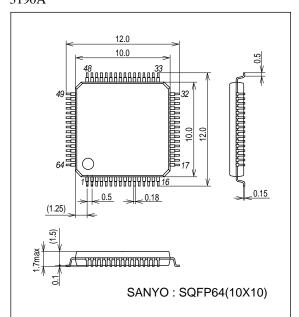

For information about AF-Series:

Flash Support Group, Inc.

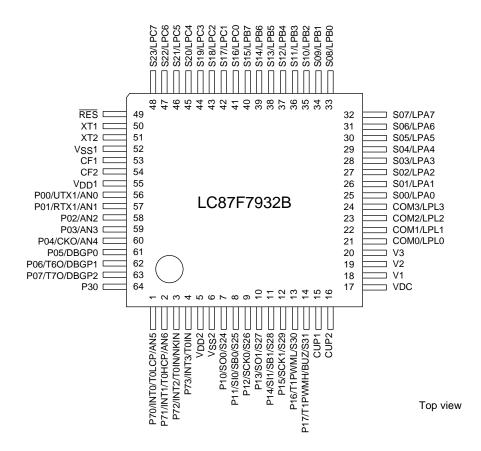
TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp


Package Dimensions

unit : mm (typ) 3159A


Package Dimensions

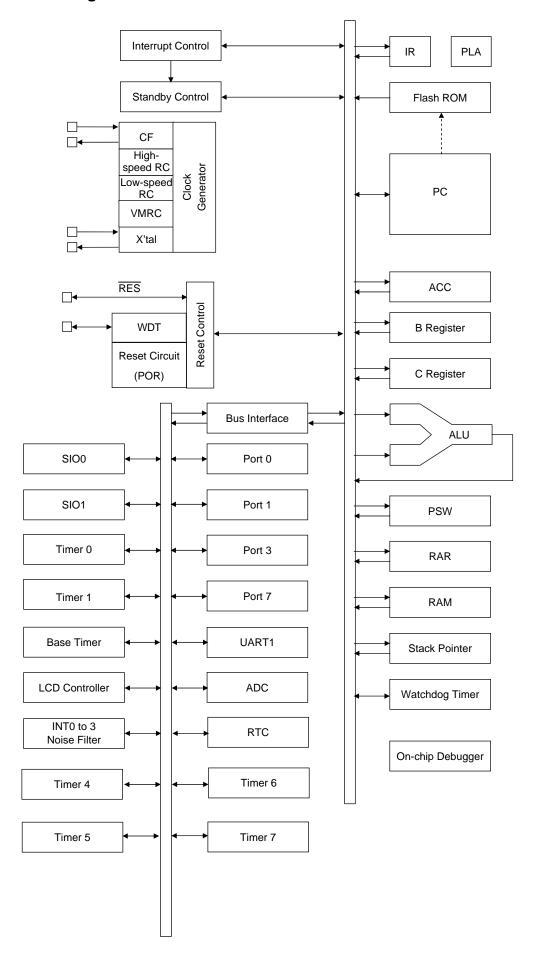
unit : mm (typ) 3289



Package Dimensions

unit : mm (typ) 3190A

Pin Assignment



SANYO: QIP64E (14×14) "Lead-and-halogen-free product" SANYO: TQFP64J (7×7) "Lead-and-halogen-free product" SANYO: SQFP64 (10×10) "Lead-and-halogen-free product"

PIN No.	NAME
1	P70/INT0/T0LCP/AN5
2	P71/INT1/T0HCP/AN6
3	P72/INT2/T0IN/NKIN
4	P73/INT3/T0IN
5	V _{DD} 2
6	V _{SS} 2
7	P10/S00/S24
8	P11/SI0/SB0/S25
9	P12/SCK0/S26
10	P13/SO1/S27
11	P14/SI1/SB1/S28
12	P15/SCK1/S29
13	P16/T1PWML/S30
14	P17/T1PWMH/BUZ/S31
15	CUP1
16	CUP2
17	VDC
18	V1
19	V2
20	V3
21	COM0/LPL0
22	COM1/LPL1
23	COM2/LPL2
24	COM3/LPL3
25	S00/LPA0
26	S01/LPA1
27	S02/LPA2
28	S03/LPA3
29	S04/LPA4
30	S05/LPA5
31	S06/LPA6
32	S07/LPA7

r	T
PIN NO.	NAME
33	S08/LPB0
34	S09/LPB1
35	S10/LPB2
36	S11/LPB3
37	S12/LPB4
38	S13/LPB5
39	S14/LPB6
40	S15/LPB7
41	S16/LPC0
42	S17/LPC1
43	S18/LPC2
44	S19/LPC3
45	S20/LPC4
46	S21/LPC5
47	S22/LPC6
48	S23/LPC7
49	RES
50	XT1
51	XT2
52	V _{SS} 1
53	CF1
54	CF2
55	V _{DD} 1
56	P00/UTX1/AN0
57	P01/RTX1/AN1
58	P02/AN2
59	P03/AN3
60	P04/CKO/AN4
61	P05/DBGP0
62	P06/T6O/DBGP1
63	P07/T7O/DBGP2
64	P30

System Block Diagram

Pin Description

Pin Name	I/O				Description			Option	
V _{SS} 1, V _{SS} 2	-	• Power supply (-)	Power supply (-)						
V _{DD} 1, V _{DD} 2, V2	-	Power supply (+	Power supply (+)						
VDC	-	Internal power s	ternal power supply						
CUP1, CUP2	-	Capacitor conne	ecting pins for	step-up/step-d	own circuits			No	
Port 0	I/O	• 8-bit I/O port						Yes	
P00 to P07		• I/O can be speci	ified in 1-bit ur	nits.					
		Pull-up resistors	can be turned	d on and off in	1-bit units.				
		HOLD release in	nput						
		Port 0 interrupt in	nput						
		Multiplexed func	tions						
		P00: UART1 tra	nsmit data ou	tput					
		P01: UART1 red	eive data inp	ut					
		P04: System clo	ck output						
		P05: DBGP0 (L0	C87F7932B)						
		P06: Timer 6 tog	gle output/DE	3GP1 (LC87F7	932B)				
		P07: Timer 7 tog	gle output/DE	3GP2 (LC87F7	932B)				
		AD converter inp	out ports: ANO) (P00) to AN4	(P04)				
Port 1	I/O	• 8-bit I/O port						Yes	
P10/S24 to		I/O can be speci	ified in 1-bit ur	nits.					
P17/S31		 Pull-up resistors 	can be turned	d on and off in	1-bit units.				
		 Multiplexed func 	tions						
		P10: SIO0 data	output						
		P11: SIO0 data	input or bus I/	/O					
		P12: SIO0 clock	. I/O						
		P13: SIO1 data	output						
		P14: SIO1 data	input or bus I/	O					
		P15: SIO1 clock	. I/O						
		P16: Timer 1 PV	VML output						
		P17: Timer 1 PV	VMH output/b	uzzer output					
		Segment output	for LCD: S24	(P10) to S31 (S17)				
Port 3	I/O	•1-bit I/O port						Yes	
P30		I/O can be speci							
		Pull-up resistors	can be turned	d on and off in	1-bit units.				
Port 7	I/O	4-bit I/O port						No	
P70 to P73		I/O can be speci							
		Pull-up resistors		d on and off in	1-bit units.				
		Multiplexed fund							
		-		-	L capture input/output for	r watchdog tir	ner		
		P71: INT1 input/		•					
				e input/timer 0	event input/timer 0L cap	ture input/nig	n-speea сюск		
		counter inp		tor\/timor 0 ove	ent input/timer 0H capture	o input			
			,	,		e iriput			
		AD converter inp	put ports: AINS nowledge type		7.1)				
		ппенирг аскг			Riging and falling	H level	L level		
			Rising	Falling	Rising and falling				
		INT0	Enable	Enable	Disable	Enable	Enable		
		INT1	Enable	Enable	Disable	Enable	Enable		
	1	INT2	Enable	Enable	Enable	Disable	Disable		
		INT3	Enable	Enable	Enable	Disable	Disable		

Continued on next page.

Continued from preceding page.

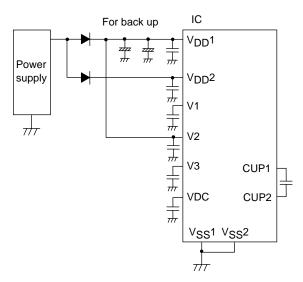
Pin name	I/O	Description	Option
S00/LPA0 to	I/O	Segment output for LCD	No
S07/LPA7		Can be used as general purpose I/O ports (LPA)	
S08/LPB0 to	I/O	Segment output for LCD	No
S15/LPB7		Can be used as general purpose I/O ports (LPB)	
S16/LPC0 to	I/O	Segment output for LCD	No
S23/LPC7		Can be used as general purpose I/O ports (LPC)	
COM0/LPL0 to	I/O	Common output for LCD	No
COM3/LPL3		Can be used as general purpose I/O ports (LPL)	
V1 to V3	I/O	LCD drive bias power supply	No
RES	I	Reset pin	No
XT1	I/O	32.768kHz crystal resonator input pin	No
		General purpose input port	
		Must be connected to V _{DD} 1 if not to be used.	
XT2	I/O	32.768kHz crystal resonator output pin	No
		General purpose I/O port	
		Must be set for oscillation and kept open if not to be used.	
CF1	I	Ceramic resonator input pin	No
		Must be connected to V _{DD} 1 if not to be used.	
CF2	0	Ceramic resonator output pin	No
		Must be kept open if not to be used.	

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in output mode.

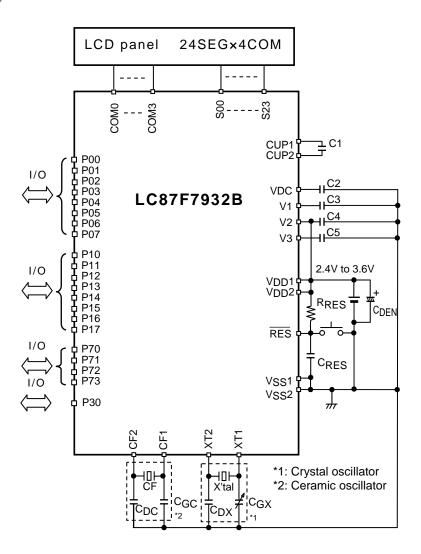
Port	Options Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P10 to P17	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P30	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P70	-	No	N-channel open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
S00/LPA0 to	-	No	CMOS	No
S23/LPC7			P-channel open drain	
			N-channel open drain	
COM0/LPL0 to	-	No	CMOS	No
COM3/LPL3			P-channel open drain	
			N-channel open drain	
XT1	-	No	Input only	No
XT2	-	No	32.768kHz crystal resonator output	No
			N-channel open drain when selected as a general- purpose output port	

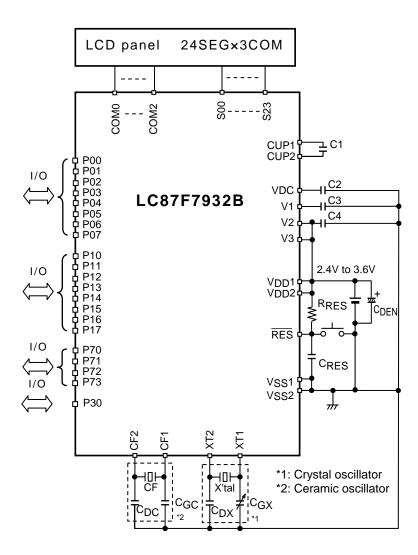

User Option Table

Option Name	Option to be Applied on	Mask Version *1	Flash-ROM Version	Option Selected in Units of	Option Selection
Port output type	P00 to P07		•	412	CMOS
			0	1 bit	N-channel open drain
	P10 to P17			415	CMOS
	0		O	1 bit	N-channel open drain
	P30		_	415	CMOS
			0	1 bit	N-channel open drain
Base timer	Watchdog timer detection period				1 second
watchdog timer		riod	0		2 seconds
				-	4 seconds
					8 seconds
Program start					00000h
address	-	*2	0	-	07E00h

^{*1:} Mask option selection. No change possible after mask is completed.

- *Note 1: Connect the IC as shown below to minimize noise on the V_{DD}1. Be sure to electrically short the V_{SS}1 and V_{SS}2.
- *Note 2: The power to retain the internal memory is supplied via the V2 pin. VDD1, VDD2 and V2 are used as power supply for ports. If VDD1 and VDD2 are not backed up, the output does not go high even if a high level is applied to the port latch. Therefore, if VDD1 and VDD2 are not backed up, the high level output becomes unstable in HOLD mode, and the backup time becomes shorter because a through-current flows from VDD to GND in the input buffer.


If V_{DD}1 and V_{DD}2 are not backed up, configure the program or set up the external circuit so that the output is held at a low level in HOLD mode to prevent an unnecessary through-current from flowing.


^{*2:} Program start address of the mask version is 00000h.

Circuit Example

(1)1/3 bias, 1/4 duty

X'tal	Crystal resonator	Refer to Page 26
C _{GX}	Trimmer capacitor	(Characteristics of a sample clock oscillator
C _{DX}	Capacitor for crystal oscillator	circuit)
CF	Ceramic resonator	Refer to Page 26
C _{GC}	Capacitor for ceramic oscillator	(Characteristics of a sample clock oscillator
C _{DC}	Capacitor for ceramic oscillator	circuit)
C1 to C5	Capacitors	0.1μF (recommended)
C _{DEN}	Electrolytic capacitor	For back up
C _{RES}	Capacitor for RES	Refer to User's manual "Reset Function"
R _{RES}	Resistor for RES	

X'tal	Crystal resonator	Refer to Page 26
C _{GX}	Trimmer capacitor	(Characteristics of a sample clock oscillator
C _{DX}	Capacitor for crystal oscillator	circuit)
CF	Ceramic resonator	Refer to Page 26
C _{GC}	Capacitor for ceramic oscillator	(Characteristics of a sample clock oscillator
C _{DC}	Capacitor for ceramic oscillator	circuit)
C1 to C4	Capacitors	0.1μF (recommended)
C _{DEN}	Electrolytic capacitor	For back up
C _{RES}	Capacitor for RES	Refer to User's manual "Reset Function"
R _{RES}	Resistor for RES	

Absolute Maximum Ratings at Ta=25°C and $V_{SS}1\!=\!V_{SS}2\!=\!\!0V$

Parameter	Symbol	Pin/Remarks	Conditions			Spe	cification	1
Taramoto Symbo		FIII/IVEIIIAIKS	Conditions	V _{DD} [V]	min	typ	max	uni
Maximum supply voltage	V _{DD} max	V _{DD} 1, V _{DD} 2, V2	V _{DD} 1=V _{DD} 2=V2		-0.3		+4.3	
Supply voltage	VLCD	V1			-0.3		1/2V _{DD}	
for LCD		V2			-0.3		V_{DD}	
		V3			-0.3		2/3V _{DD}	٧
Input voltage	VI	XT1, CF1, RES			-0.3		V _{DD} +0.3	
Input/output voltage	V _{IO} (1)	Ports 0, 1, 3, 7 LPA, LPB, LPC LPL, XT2			-0.3		V _{DD} +0.3	
Peak output	IOPH(1)	Ports 0, 1	CMOS output selected Current at each pin		-10			
current	IOPH(2)	Port 3	CMOS output selected		-20			
High level output current output current current	IOPH(3)	LPA, LPB, LPC LPL	CMOS output selected Current at each pin		-4			
thort	IOPH(4)	P71 to P73	Current at each pin		-5			
Total	∑IOAH(1)	Port 0	Total of all pins		-20			
output	∑IOAH(2)	Ports 3, 7	Total of all pins		-30			
등 current	∑IOAH(3)	Port 1	Total of all pins		-20			
	∑IOAH(4)	Ports 1, 3, 7	Total of all pins		-45			
	∑IOAH(5)	LPA, LPB, LPC, LPL	Total of all pins		-30			m/
Peak	IOPL(1)	Ports 0, 1	Current at each pin				20	
output	IOPL(2)	Port 3	Current at each pin				30	
current	IOPL(3)	Port 7	Current at each pin				10	
Total output current current	IOPL(4)	LPA, LPB, LPC, LPL	Current at each pin				6	
Total	∑IOAL(1)	Port 0	Total of all pins				40	
output	∑IOAL(2)	Ports 3, 7	Total of all pins				50	
S current	∑IOAL(3)	Port 1	Total of all pins				40	
7	∑IOAL(4)	Ports 1, 3, 7	Total of all pins				65	
	∑IOAL(5)	LPA, LPB, LPC, LPL	Total of all pins				60	
Allowable power	Pd max	QIP64E (14×14)	Ta = -40°C to +85°C				267	
dissipation		TQFP64J (7×7)					152	m\
		SQFP64 (10×10)					192	
Operating temperature range	Topr				-40		85	
Storage temperature range	Tstg				-55		125	°(

Allowable Operating Conditions at Ta=-40°C to +85°C, $V_{SS}1$ = $V_{SS}2$ =0V

Doromotor	Cumphal	Din/Domonto	Conditions			Specification		
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating supply voltage (Note 2-1)	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V2	0.75μs≤tCYC≤200μs Normal mode		2.4		3.6	
Memory sustaining supply voltage	VHD	V _{DD} 1=V _{DD} 2=V2	RAM and register contents sustained in HOLD mode.		2.2		3.6	
High level input voltage	V _{IH} (1)	Ports 0, 3 LPA, LPB, LPC, LPL	Output disabled	2.4 to 3.6	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Port 1 P71 to 73 P70 port input / interrupt side	Output disabled When INT1VTSL=0 (P71 only)	2.4 to 3.6	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (3)	P71 interrupt side	Output disabled When INT1VTSL=1	2.4 to 3.6	0.85V _{DD}		V _{DD}	
	V _{IH} (4)	P70 watchdog timer side	Output disabled	2.4 to 3.6	0.9V _{DD}		V _{DD}	V
	V _{IH} (5)	XT1, XT2, CF1, RES		2.4 to 3.6	0.75V _{DD}		V_{DD}	
Low level input voltage	V _{IL} (1)	Ports 0, 3 LPA, LPB, LPC, LPL	Output disabled	2.4 to 3.6	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Port 1 P71 to 73 P70 port input / interrupt side	Output disabled When INT1VTSL=0 (P71 only)	2.4 to 3.6	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	P71 interrupt side	Output disabled When INT1VTSL=1	2.4 to 3.6	V _{SS}		0.45V _{DD}	
	V _{IL} (4)	P70 watchdog timer side	Output disabled	2.4 to 3.6	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (5)	XT1, XT2, CF1, RES		2.4 to 3.6	V _{SS}		0.25V _{DD}	
Instruction cycle time (Note 2-2)	tCYC			2.4 to 3.6			200	μs
External system clock frequency	FEXCF(1)	CF1	CF2 pin open System clock frequency division ratio = 1/1 External system clock duty = 50±5%	2.4 to 3.6	0.1		4	MHz
			CF2 pin open System clock frequency division ratio = 1/2	2.4 to 3.6	0.2		8	
Oscillation frequency range	FmCF(1)	CF1, CF2	4MHz ceramic oscillation See Fig. 1.	2.4 to 3.6		4		MHz
(Note 2-3)	FmRC(1)		Internal high-speed RC oscillation	2.4 to 3.6	250	500	750	
	FsRC(1)		Internal low-speed RC oscillation	2.4 to 3.6	25	50	75	kHz
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 2.	2.4 to 3.6		32.768		
VMRC oscillation	OpVMRC(1)		When VMSL4M=0	3.0 to 3.6	8	10	12	N 41 1
usable range	OpVMRC(2)		When VMSL4M=1	2.4 to 3.6	3.5	4	4.5	MHz
VMRC oscillation adjustment	VmADJ(1)		Each step of VMRAJn (Wide range)	2.4 to 3.6	8	24	64	0/
range	VmADJ(2)		Each step of VMFAJn (Small range)	2.4 to 3.6	1	4	8	. %

Note 2-1: V_{DD} must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Electrical Characteristics at Ta=-40°C to +85°C, $V_{SS}1=V_{SS}2=0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specific		
				V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 3, 7 LPA, LPB, LPC LPL	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	2.4 to 3.6			1	
	I _{IH} (2)	RES	V _{IN} =V _{DD}	2.4 to 3.6			1	
	I _{IH} (3)	XT1, XT2	Input port specification V _{IN} =V _{DD}	2.4 to 3.6			1	
	I _{IH} (4)	CF1	V _{IN} =V _{DD}	2.4 to 3.6			15	
Low level input current	l _{IL} (1)	Ports 0, 1, 3, 7 LPA, LPB, LPC LPL	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.4 to 3.6	-1			μΑ
	I _{IL} (2)	RES	V _{IN} =V _{SS}	2.4 to 3.6	-1			
	I _{IL} (3)	XT1, XT2	Input port specification VIN=VSS	2.4 to 3.6	-1			
	I _{IL} (4)	CF1	V _{IN} =V _{SS}	2.4 to 3.6	-15			
High level output	V _{OH} (1)	CMOS output ports	I _{OH} =-0.4mA	3.0 to 3.6	V _{DD} -0.4			
voltage	V _{OH} (2)	0, 1	I _{OH} =-0.2mA	2.4 to 3.6	V _{DD} -0.4			
	V _{OH} (3)	CMOS output port 3	I _{OH} =-1.6mA	3.0 to 3.6	V _{DD} -0.4			
	V _{OH} (4)	1	I _{OH} =-1mA	2.4 to 3.6	V _{DD} -0.4			
	V _{OH} (5)	P71 to 73	I _{OH} =-0.4mA	3.0 to 3.6	V _{DD} -0.4			
	V _{OH} (6)	1	I _{OH} =-0.2mA	2.4 to 3.6	V _{DD} -0.4			
	V _{OH} (7)	LPA, LPB, LPC LPL	I _{OH} =-0.1mA	2.4 to 3.6	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1	I _{OL} =1.6mA	3.0 to 3.6			0.4	•
voltage	V _{OL} (2)		I _{OL} =1mA	2.4 to 3.6			0.4	
	V _{OL} (3)	Port 3	I _{OL} =5mA	3.0 to 3.6			0.4	
	V _{OL} (4)		I _{OL} =2.5mA	2.4 to 3.6			0.4	V
	V _{OL} (5)	Port 7	I _{OL} =1.6mA	3.0 to 3.6			0.4	
	V _{OL} (6)	XT2	I _{OL} =1mA	2.4 to 3.6			0.4	
	V _{OL} (7)	LPA, LPB, LPC LPL	I _{OL} =0.1mA	2.4 to 3.6			0.4	
LCD output voltage deviation	VODLS	S00 to S31	• I _O =0mA • V1, V2, V3 LCD level output • See Fig. 8.	2.4 to 3.6	0		±0.2	
	VODLC	COM0 to COM3	• I _O =0mA • V1, V2, V3 LCD level output • See Fig. 8.	2.4 to 3.6	0		±0.2	
Pull-up resistance	Rpu(1)	Ports 0, 1, 3, 7	V _{OH} =0.9V _{DD}	2.4 to 3.6	18	50	150	kΩ
Hysterisis voltage	VHYS(1)	Ports 1, 7		2.4 to 3.6		0.1V _{DD}		V
Pin capacitance	СР	All pins	For pins other than that under test: V _{IN} =V _{SS} f=1MHz Ta=25°C	2.4 to 3.6		10		pF

Serial I/O Characteristics at $Ta=-40^{\circ}C$ to $+85^{\circ}C,\,V_{SS}1=V_{SS}2=0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

		Parameter	Symbol	Pin/Remarks	Conditions			Speci	fication	
			,			V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 6.		2			
		Low level	tSCKL(1)				1			
	송	pulse width High level	tSCKH(1)	-			1			
	Input clock	pulse width	tSCKHA(1)	-	Continuous data	2.4 to 3.6	1			
	Inpu		10011111(1)		transmission/reception					tCYC
					mode		4			
쑹					• See Fig. 6.					
Serial clock		Frequency	tSCK(2)	SCK0(P12)	(Note 4-1-2) CMOS output selected		4/3			
Seria		Low level	tSCKL(2)	3CR0(F12)	• See Fig. 6.		4/3			
"		pulse width	toorte(z)		Ů			1/2		+0.014
	ock	High level	tSCKH(2)					1/2		tSCK
	Output clock	pulse width		-		2.4 to 3.6		.,,_		
	Outp		tSCKHA(2)		Continuous data transmission/reception				tSCKH(2)	
					mode		tSCKH(2)		+(10/3)	tCYC
					CMOS output selected		+2tCYC		tCYC	
			. =		• See Fig. 6.					
<u>+</u>	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	 Must be specified with respect to the rising edge 		0.03			
inpu				Clo(i 11)	of SIOCLK.	2.4 to 3.6	0.00			
Serial input	Da	ta hold time	thDI(1)		• See Fig. 6.					
S							0.03			
		Output delay	tdDO(1)	SO0(P10),	Continuous data					
	X	time		SB0(P11)	transmission/reception				(1/3)tCYC	
	t clo				mode				+0.05	μs
but	Input clock		, IDO(0)		• (Note 4-1-3)				4:0)(0	
ont			tdDO(2)		Synchronous 8-bit mode(Note 4-1-3)	2.4 to 3.6			1tCYC +0.05	
Serial output	×		tdDO(3)		(Note 4-1-3)					
"	cloc								(1/3)tCYC	
	Output clock								+0.05	
	Õ									

Note 4-1-1: These specifications are theoretical values. Be sure to add margin depending on its use.

Note 4-1-2: In an application where the serial clock input is to be used in continuous data transmission/reception mode, the time from SI0RUN being set when serial clock is high to the falling edge of the first serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to the falling edge of SIOCLK. Must be specified as the time up to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

	-	Parameter	Symbol	Pin/Remarks	Conditions			Spec	ification	
	Г	arameter	Symbol	Pili/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(3)	SCK1(P15)	See Fig. 6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.4 to 3.6	1			tCYC
Serial clock	lnp	High level pulse width	tSCKH(3)				1			ICYC
erial	k	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected		2			
S	out clock	Low level pulse width	tSCKL(4)		• See Fig. 6.	2.4 to 3.6		1/2		tSCK
	Output	High level pulse width	tSCKH(4)					1/2		ISCK
Serial input	Da	ata setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to the rising edge of SIOCLK.		0.03			
Serial	Da	ata hold time	thDI(2)		• See Fig. 6.	2.4 to 3.6	0.03			
Serial output	Ou	itput delay time	tdDO(4)	SO1(P13), SB1(P14)	Must be specified with respect to the falling edge of SIOCLK. Must be specified as the time up to the beginning of output state change in open drain output mode. See Fig. 6.	2.4 to 3.6			(1/3)tCYC +0.05	μѕ

Note 4-2-1: These specifications are theoretical values. Be sure to add margin depending on its use.

Pulse Input Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

D	0	Dia /Danasalas	Conditions			Spec	ification	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level	tPIH(1)	INT0(P70),	Interrupt source flag can be set.					
pulse width	tPIL(1)	INT1(P71),	Event inputs for timer 0	2.4 to 3.6	1			
		INT2(P72)	are enabled.					
	tPIH(2)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(2)	noise filter time	Event inputs for timer 0 are	2.4 to 3.6	2			
		constant is 1/1	enabled.					tCYC
	tPIH(3)	INT3(P73) when	Interrupt source flag can be set.					1010
	tPIL(3)	noise filter time	Event inputs for timer 0 are	2.4 to 3.6	64			
		constant is 1/32	enabled.					
	tPIH(4)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(4)	noise filter time	Event inputs for timer 0 are	2.4 to 3.6	256			
		constant is 1/128	enabled.					
	tPIL(5)	RES	Resetting is enabled.	2.4 to 3.6	200			μs

AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = 0V$

<12-bit AD Conversion Mode at Ta=-40°C to +85°C>

Parameter	Symbol	Pin/Remarks	Conditions		Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Resolution	N	AN0 (P00) to		3.0 to 3.6		12		bit	
Absolute accuracy	ET	AN4 (P04), AN5 (P70) to	(Note 6-1)	3.0 to 3.6			±16	LSB	
Conversion time	TCAD	AN6 (P71)	See conversion time calculation formulas. (Note 6-2)	3.0 to 3.6	64		115	μs	
Analog input voltage range	VAIN			3.0 to 3.6	V _{SS}		V_{DD}	٧	
Analog port input	IAINH		VAIN=V _{DD}	3.0 to 3.6			1		
current	IAINL		VAIN=V _{SS}	3.0 to 3.6	-1			μΑ	

<8-bit AD Conversion Mode at Ta=-40°C to +85°C>

Dorometer	Cumbal	Pin/Remarks	Conditions		Specification				
Parameter	Symbol		Conditions	V _{DD} [V]	min	typ	max	Unit	
Resolution	N	AN0(P00) to		3.0 to 3.6		8		bit	
Absolute accuracy	ET	AN4(P04), AN5(P70) to	(Note 6-1)	3.0 to 3.6			±1.5	LSB	
Conversion time	TCAD	AN6(P71)	See conversion time calculation formulas. (Note 6-2)	3.0 to 3.6	40		90	μs	
Analog input voltage range	VAIN			3.0 to 3.6	V _{SS}		V_{DD}	V	
Analog port input	IAINH		VAIN=V _{DD}	3.0 to 3.6			1		
current	IAINL]	VAIN=V _{SS}	3.0 to 3.6	-1			μΑ	

Conversion Time Calculation Formulas:

12-bit AD conversion mode: TCAD (conversion time) = $((52/(AD \text{ division ratio})) + 2) \times (1/3) \times \text{tCYC}$ 8-bit AD conversion mode: TCAD (conversion time) = $((32/(AD \text{ division ratio})) + 2) \times (1/3) \times \text{tCYC}$

< Recommended Operating Conditions>

External Oscillator	Supply Voltage Range	System Clock Division Ratio	Cycle Time	AD Frequency Division Ratio	Conversion Time (TCAD)		
(FmCF)	(V _{DD})	(SYSDIV)	(tCYC)	(ADDIV)	12-bit AD	8-bit AD	
CF-4MHz	3.0V to 3.6V	1/1	750ns	1/8	104.5μs	64.5μs	

Note 6-1: The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy. The absolute accuracy is measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process is executed until the time the conversion result register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is doubled in the following cases:

- The first AD conversion is performed in the 12 bits AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8 bits to 12 bits conversion mode.

Consumption Current Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specific	ation	
Farameter	Symbol	FIII/IXemaiks	Conditions	V _{DD} [V]	min	typ	max	unit
Current consumption in normal operating mode (Note 7-1)	IDDOP(1)	V _{DD} 1=V _{DD} 2 =V2	FmCF=4MHz ceramic oscillation FsX'tal=32.768kHz crystal oscillation System clock set to 4MHz side Internal RC oscillation stopped VMRC oscillation stopped 1/1 frequency division ratio	2.4 to 3.6		2.0	4.2	mA
	IDDOP(2)		FmCF=0Hz (Oscillation stopped) FsX'tal=32.768kHz crystal oscillation System clock set to high-speed internal RC oscillation VMRC oscillation stopped 1/1 frequency division ratio	2.4 to 3.6		250	900	Ъд
	IDDOP(3)		FmCF=0Hz (Oscillation stopped) FsX'tal=32.768kHz crystal oscillation System clock set to low-speed internal RC oscillation VMRC oscillation stopped 1/1 frequency division ratio	2.4 to 3.6		30	120	<u>ξ</u>
	IDDOP(4)		FmCF=0Hz (Oscillation stopped) FsX'tal=32.768kHz crystal oscillation Internal RC oscillation stopped System clock set to 4MHz VMRC oscillation 1/1 frequency division ratio	2.4 to 3.6		2.0	5.4	mA
	IDDOP(5)		FmCF=0Hz (Oscillation stopped) FsX'tal=32.768kHz crystal oscillation Internal RC oscillation stopped System clock set to 500kHz VMRC oscillation 1/1 frequency division ratio	2.4 to 3.6		250	900	
	IDDOP(6)		FmCF=0Hz (Oscillation stopped) FsX'tal=32.768kHz crystal oscillation System clock set to 32.768kHz side Internal RC oscillation stopped VMRC oscillation stopped 1/1 frequency division ratio Normal XT amp mode	2.4 to 3.6		20	86	μΑ
	IDDOP(7)		FmCF=0Hz (Oscillation stopped) FsX'tal=32.768kHz crystal oscillation System clock set to 32.768kHz side Internal RC oscillation stopped VMRC oscillation stopped 1/1 frequency division ratio Low consumption XT amp mode	2.4 to 3.6		15	72	

Note 7-1: The consumption current value does not include current that flows into the output transistors and internal pull-up resistors.

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pin/Remarks	Conditions			Specific	cation	
i didilibibi	Cyrribor	i ii/iteiliaiks	Conditions	V _{DD} [V]	min	typ	max	unit
consumption in HALT mode (Note 7-1)	IDDHALT(1)	V _{DD} 1=V _{DD} 2 =V2	HALT mode • FmCF=4MHz ceramic oscillation • FsX'tal=32.768kHz crystal oscillation • System clock set to 4MHz side • Internal RC oscillation stopped • VMRC oscillation stopped • 1/1 frequency division ratio	2.4 to 3.6		0.55	1.55	mA
	IDDHALT(2)		HALT mode FmCF=0Hz (Oscillation stopped) FsX'tal=32.768kHz crystal oscillation System clock set to high-speed internal RC oscillation VMRC oscillation stopped 1/1 frequency division ratio	2.4 to 3.6		68	280	
	IDDHALT(3)		HALT mode FmCF=0Hz (Oscillation stopped) FsX'tal=32.768kHz crystal oscillation System clock set to low-speed internal RC oscillation VMRC oscillation stopped 1/1 frequency division ratio	2.4 to 3.6		7	85	
	IDDHALT(4)		HALT mode • FmCF=0Hz (Oscillation stopped) • FsX'tal=32.768kHz crystal oscillation • Internal RC oscillation stopped • System clock set to 4MHz VMRC oscillation • 1/1 frequency division ratio	2.4 to 3.6		650	1460	
	IDDHALT(5)		HALT mode • FmCF=0Hz (Oscillation stopped) • FsX'tal=32.768kHz crystal oscillation • Internal RC oscillation stopped • System clock set to VMRC oscillation (500kHz) • 1/1 frequency division ratio	2.4 to 3.6		68	280	μΑ
	IDDHALT(6)		HALT mode • FmCF=0Hz (Oscillation stopped) • FsX'tal=32.768kHz crystal oscillation • System clock set to 32.768kHz side • Internal RC oscillation stopped. • VMRC oscillation stopped •1/1 frequency division ratio • Normal XT amp mode	2.4 to 3.6		8	70	
	IDDHALT(7)		HALT mode • FmCF=0Hz (Oscillation stopped) • FsX'tal=32.768kHz crystal oscillation • System clock set to 32.768kHz side • Internal RC oscillation stopped. • VMRC oscillation stopped • 1/1 frequency division ratio • Low consumption XT amp mode	2.4 to 3.6		4	50	

Note 7-1: The consumption current value does not include current that flows into the output transistors and internal pull-up resistors.

Continued on next page.

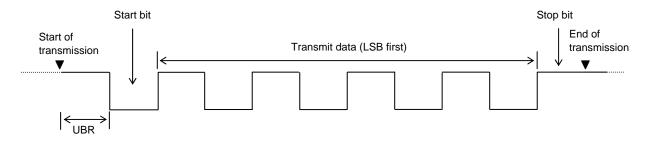
Continued from preceding page.

Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Current	IDDHOLD(1)	V _{DD} 1=V _{DD} 2	HOLD mode					
consumption in		=V2	CF1=V _{DD} or open	2.4 to 3.6		0.05	30	
HOLD mode			(When using external clock)					
Current	IDDHOLD(2)	$V_{DD}1=V_{DD}2$	Time-of-day clock HOLD mode					
consumption in		=V2	• CF1=V _{DD} or open					
time-of-day clock			(When using external clock)					
HOLD mode			FsX'tal=32.768kHz crystal oscillation	2.4 to 3.6		6.5	67	
			• 1/1 frequency division ratio					
			LCD display off					
			Normal XT amp mode					
	IDDHOLD(3)		Time-of-day clock HOLD mode					
			• CF1=V _{DD} or open					μΑ
			(When using external clock)					
			FsX'tal=32.768kHz crystal oscillation	2.4 to 3.6		0.45	46	
			• 1/1 frequency division ratio					
			LCD display off					
			Low consumption XT amp mode					
	IDDHOLD(4)		Time-of-day clock HOLD mode					
			• CF1=V _{DD} or open					
			(When using external clock)	0.44.00		4 -	70	
			FsX'tal=low-speed RC oscillation	2.4 to 3.6		1.5	70	
			• 1/1 frequency division ratio					
			LCD display off					

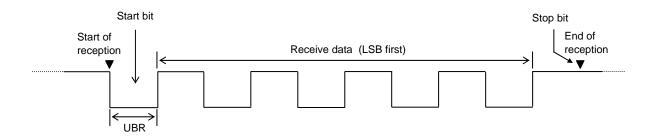
F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Daramatar	Symbol Pin/Remarks		Conditions		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Onboard programming current	IDDFW(1)	V _{DD} 1	Excluding power dissipation in the microcontroller block	3.0 to 5.5		5	10	mA
Programming	tFW(1)		Erasing operation	2.0 to 5.5		20	30	ms
time	tFW(2)		Programming operation	3.0 to 5.5		45	60	μs

UART (Full Duplex) Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$


Parameter	Symbol	Pin/Remarks	0 - 177		Specification				
			Conditions	V _{DD} [V]	min	typ	max	unit	
Transfer rate	UBR	UTX (P00), URX (P01)		2.4 to 3.6	16/3		8192/3	tCYC	

Data length: 7/8/9 bits (LSB first)


Stop bits: 1 bit (2 bits in continuous data transmission)

Parity bits: None

Example of 8-bit Data Transmission Mode Processing (Transmit Data=55H)

Example of 8-bit Data Reception Mode Processing (Receive Data=55H)

Characteristics of a Sample Main System Clock Oscillator Circuit

Given below are the characteristics of a sample main system clock oscillator circuit, which are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with normal and stable oscillation confirmed by the resonator vendor.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Resonator

Nominal Vendo		ndor		Circuit Constant				Oscillation Stabilization Time		D	
Frequency Name	Name	Resonator Name	C1	C2	Rf1	Rd1	Range	typ	max	Remarks	
		[pF]	[pF]	$[\Omega]$	$[\Omega]$	[V]	[ms]	[ms]			
4.00MHz Murata	CSTCR4M00G53-R0	(15)	(15)	Open	1k	2.4 to 3.6	0.03	0.15	Internal		
	CSTLS4M00G53-B0	(15)	(15)	Open	1k	2.4 to 3.6	0.02	0.15	C1, C2		

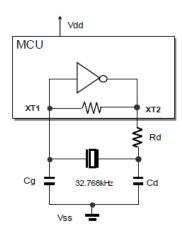
The oscillation stabilization time is the period required for the resonator to stabilize in the following situations. (See Figure 4)

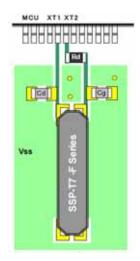
- After VDD goes above the operating voltage lower limit until the oscillation is stabilized.
- After the instruction for starting the main clock oscillation circuit is executed until the oscillation is stabilized.
- After HOLD mode is released until the oscillation is stabilized.
- After HOLD mode is released and oscillation is started with CFSTOP (OCR register, bit0) set to 0 until the oscillation is stabilized.

Characteristics of a Sample Sub-system Clock Oscillator Circuit

Given below are the characteristics of a sample sub-system clock oscillator circuit, which are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with normal and stable oscillation confirmed by the resonator vendor. (Different evaluation boards are used for Tables 2 and 3.)

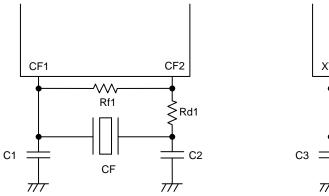
Table 2 Characteristics of a Sample Sub-system Clock Oscillator Circuit with a Crystal Resonator 1

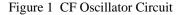

Nominal	Vendor	Resonator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Damada
Frequency Nar	Name		C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]	Range [V]	typ [s]	max [s]	Remarks
			9	9	Open	330k	2.4 to 3.6	1	3	CL=7.0pF Normal amp
32.768KHz	Epson Toyocom	MC-306	3	3	Open	0	2.4 to 3.6	2	6	CL=7.0pF Low consumption amp


Table 3 Characteristics of a Sample Sub-system Clock Oscillator Circuit with a Crystal Resonator 2 (*5)

Nominal Frequency	Vendor Name	Resonator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Remarks	
			C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]		typ [s]	max [s]	Remarks	
32.768kHz (*1)	Seiko Instruments (*2)	SSP-T7-F VT-200-F	22	22	Open	820k	2.4 to 3.6	1.8	3	CL=12.5pF (*3) Normal amp	
		SSP-T7-FL	7 6	_	Open	0	2.4 to 3.6	0.9	3	CL=6.0pF (*4)	
		VT-200-FL		6						Low consumption amp	

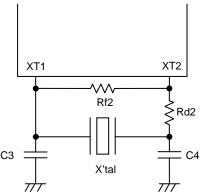
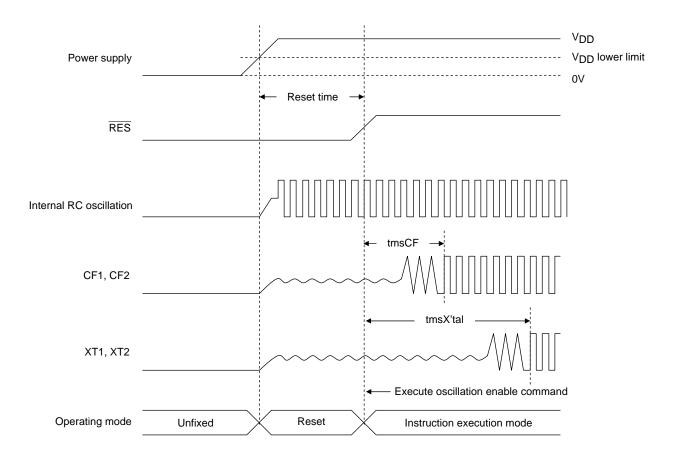
- (*1) Normal XT amplifier mode (*3) or low consumption amplifier mode (*4) should be selected for the sub-system clock oscillator circuit.
- (*2) Contact Seiko Instruments, Inc., (http://www.sii-crystal.com) for further information about the use of the resonator.
- (*3) When considering the use of normal XT amplifier mode, use an resonator that has a large load capacitance.
- (*4) When considering the use of low consumption XT amplifier mode, use a resonator that has a small load capacitance. The applicable CL value of 6.0pF makes it possible to achieve a high time accuracy for the subclock oscillator as well as high-speed oscillation startup and low power dissipation. In addition to this value, 7.0pF and 9.0pF also fall within the applicable CL value range.


(*5) A sample PCB trace pattern for a Seiko Instrument resonator is shown below.



- (Note 1) The oscillation stabilization time is the period required for the oscillator to stabilize in the following situations (see Figure 4):
 - After the instruction for starting the subclock oscillator circuit is executed until the oscillation is stabilized.
 - After HOLD mode is released and oscillation is started with EXTOSC (OCR register, bit 6) set to 1 until the oscillation is stabilized.
- (Note 2) The circuit constants shown are the reference values that are provided by the resonator vendor for evaluation.

 To make final verification of the oscillation characteristics on production boards, call the resonator vendor for evaluation on printed circuit boards.
- (Note 3) When using an oscillator circuit, observe the following wiring precautions to avoid the possible adverse influence of wiring capacitance, especially in low consumption XT amplifier mode:
 - Place the components that are involved in oscillation as close to the resonator as possible with the shortest possible traces as the oscillation characteristics are subject to the variation of trace patterns.
 - Do not take a signal directly from the oscillator circuit.
 - Do not place the oscillator circuit in the vicinity of any lines that carry large current.
 - Exercise extreme care in the wiring method when using low consumption XT amplifier mode.

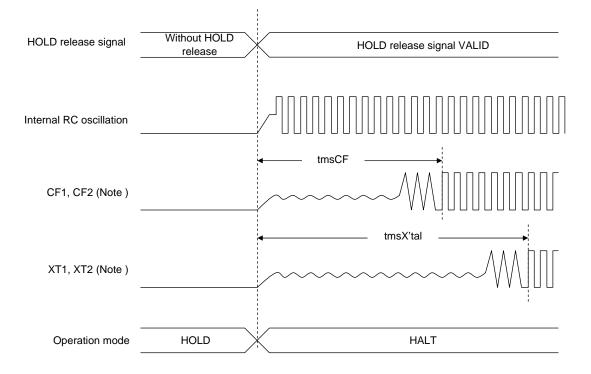
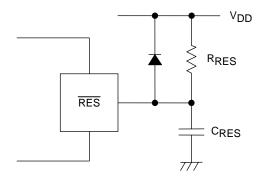

Figure 2 XT Oscillator Circuit

Figure 3 AC Timing Measurement Point


Reset Time and Oscillation Stabilization Time

HOLD Release Signal and Oscillation Stabilization Time

Note: Oscillation is enabled before HOLD mode is entered.

Figure 4 Oscillation Stabilization Time

Note:

External circuits for reset may vary depending on the usage of POR. Please refer to the user's manual on reset function.

Figure 5 Reset Circuit

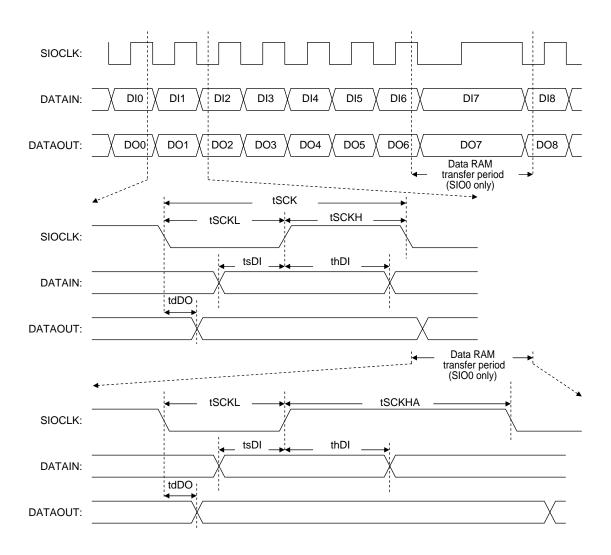


Figure 6 Serial Input/Output Waveform

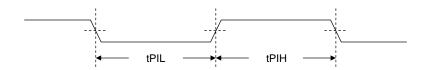


Figure 7 Pulse Input Timing Waveform

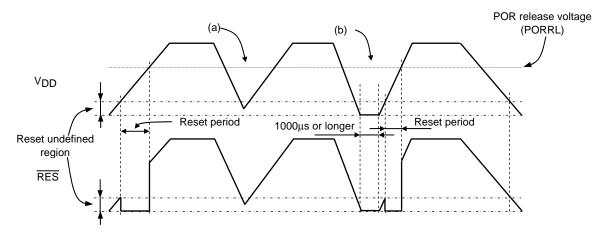


Figure 8 Sample Operating Waveforms when POR is Used (Reset pin: Pull-up resistor R_{RES} only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the V_{SS} level as shown in (a).
- A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 1000µs or longer.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co..Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of March, 2012. Specifications and information herein are subject to change without notice.