National Semiconductor

LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier

General Description

The LH0061/LH0061C is a wide band, high speed, operational amplifier capable of supplying currents in excess of 0.5 ampere at voltage levels of \pm 12V. Output short circuit protection is set by external resistors, and compensation is accomplished with a single external capacitor. With a suitable heat sink the device is rated at 20W.

The wide bandwidth and high output power capabilities of the LH0061/LH0061C make it ideal for such applications as AC servos, deflection yoke drivers, capstan drivers, and audio amplifiers. The LH0061 is guaranteed over the temperature range -55°C to $+125^\circ\text{C}$; whereas, the LH0061C is guaranteed from -25°C to $+85^\circ\text{C}$.

Features

 Output current 	0.5A
Wide large signal bandwidth	1 MHz
High slew rate	70V/µs
Low standby power	240 mW
Low input current	300 nA Max

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

Supply Voltage	±18V
Power Dissipation	See Curve
Differential Input Current (Note 2)	± 10 mA
Input Voltage (Note 3)	± 15V

Peak Output Current	2A
Output Short Circuit Duration (Note 4)	Continuous
Operating Temperature Range	
LH0061	-55°C to +125°C
LH0061C	-25°C to +85°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	260°C
ESD rating to be determined.	

DC Electrical Characteristics (Note 1)

Parameter	Conditions	LH0061			LH0061C			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$ \begin{split} R_S &\leq 10 \ \text{k}\Omega, \ T_C = \ 25^\circ\text{C}, \ V_S = \ \pm \ 15\text{V} \\ R_S &\leq 10 \ \text{k}\Omega, \ V_S = \ \pm \ 15\text{V} \end{split} $		1.0	4.0 6.0		3.0	10 15	mV mV
Voltage Drift with Temperature	$R_{S} \leq 10 \ k\Omega$		5			5		μV/°C
Offset Voltage Change with Output Power			5			5		μV/watt
Input Offset Current	$T_{\rm C} = 25^{\circ}{\rm C}$		30	100 300		50	200 500	nA nA
Offset Current Drift with Temperature			1			1		nA/°C
Input Bias Current	T _C = 25°C		100	300 1.0		200	500 1.0	nA μA
Input Resistance	$T_{\rm C} = 25^{\circ}{\rm C}$	0.3	1.0		0.3	1.0		MΩ
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$R_{S} \leq 10 \text{ k}\Omega, \Delta V_{CM} = \pm 10 \text{ V}$	70	90		60	80		dB
Input Voltage Range	$V_{S} = \pm 15V$	±11			±11			v
Power Supply Rejection Ratio	$R_{S} \leq 10 \text{ k}\Omega, \Delta V_{S} = \pm 10 \text{ V}$	70	80		50	70		dB
Voltage Gain	$V_{S} = \pm 15V, V_{O} = \pm 10V$ $R_{L} = 1 k\Omega, T_{C} = 25^{\circ}C$ $V_{S} = \pm 15V, V_{O} = \pm 10V$ $R_{L} = 200$	50	100		25	50		V/mV
	$n_{\rm L} = 2002$	- 10			2.5	+ 10		<u>v/iiiv</u>
	$v_{\rm S} = \pm 15 v_{\rm s} H_{\rm L} = 2002$	<u> ± 10</u>	± 12		110	±12		
Output Short Circuit Current	$V_{\rm S} = \pm 15V, T_{\rm C} = 25^{\circ}C, R_{\rm SC} = 1.0\Omega$		600	<u> </u>		600	L	mA
Power Supply Current	$V_{S} = \pm 15V, V_{OUT} = 0$		7	10		10	15	mA
Power Consumption	$V_{S} = \pm 15V, V_{OUT} = 0$		210	300		300	450	mW

AC Electrical Characteristics ($T_C = 25^{\circ}C$, $V_S = \pm 15V$, $C_C = 3000 \text{ pF}$)

Parameter	Conditions	Limits						
		LH0061			LH0061C			Units
		Min	Тур	Max	Min	Тур	Max	
Slew Rate	$A_V = +1, R_L = 100\Omega$	25	70		25	70		V/µs
Power Bandwidth	$R_L = 100\Omega$		1			1		MHz
Small Signal Transient Response			30			30		ns
Small Signal Overshoot			5	20		10	30	%
Settling Time (0.1%)	$\Delta V_{IN} = 10V, A_V = +1$		0.8			0.8		μs
Overload Recovery Time			1			1		μs
Harmonic Distortion	$f = 1 \text{ kHz}, P_0 = 0.5 \text{W}$		0.2			0.2		%

LH0061/LH0061C

Note 1: Specifications apply for $\pm 5V \le V_S \le \pm 18V$, C_C = 3000 pF, and $-55^{\circ}C \le T_C \le \pm 125^{\circ}C$ for the LH0061K and $-25^{\circ}C \le T_C \le \pm 85^{\circ}C$ for the LH0061CK. Typical values are for T_C = 25^{\circ}C.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Excessive current will flow if a differential voltage in excess of 1V is applied between the inputs without limiting resistors.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: Rating applies as long as package power rating is not exceeded.

Note 5: Refer to RETS0061K for LH0061K military specifications.

Typical Performance Characteristics

Typical Applications

