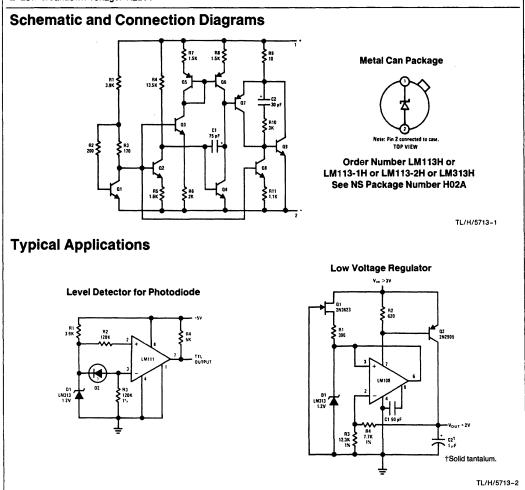
National Semiconductor

LM113/LM313 Reference Diode

General Description

The LM113/LM313 are temperature compensated, low voltage reference diodes. They feature extremely-tight regulation over a wide range of operating currents in addition to an unusually-low breakdown voltage and good temperature stability.


The diodes are synthesized using transistors and resistors in a monolithic integrated circuit. As such, they have the same low noise and long term stability as modern IC op amps. Further, output voltage of the reference depends only on highly-predictable properties of components in the IC; so they can be manufactured and supplied to tight tolerances.

Features

Low breakdown voltage: 1.220V

- Dynamic impedance of 0.3Ω from 500 µA to 20 mA
- Temperature stability typically 1% over 55°C to 125°C range (LM113), 0°C to 70°C (LM313)
- Tight tolerance: $\pm 5\%$, $\pm 2\%$ or $\pm 1\%$

The characteristics of this reference recommend it for use in bias-regulation circuitry, in low-voltage power supplies or in battery powered equipment. The fact that the breakdown voltage is equal to a physical property of silicon—the energy-band gap voltage—makes it useful for many temperature-compensation and temperature-measurement functions.

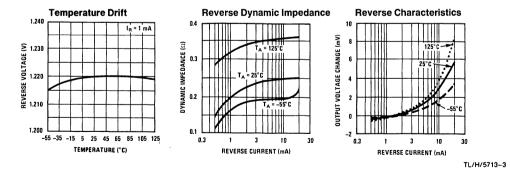
Absolute Maximum Ratings

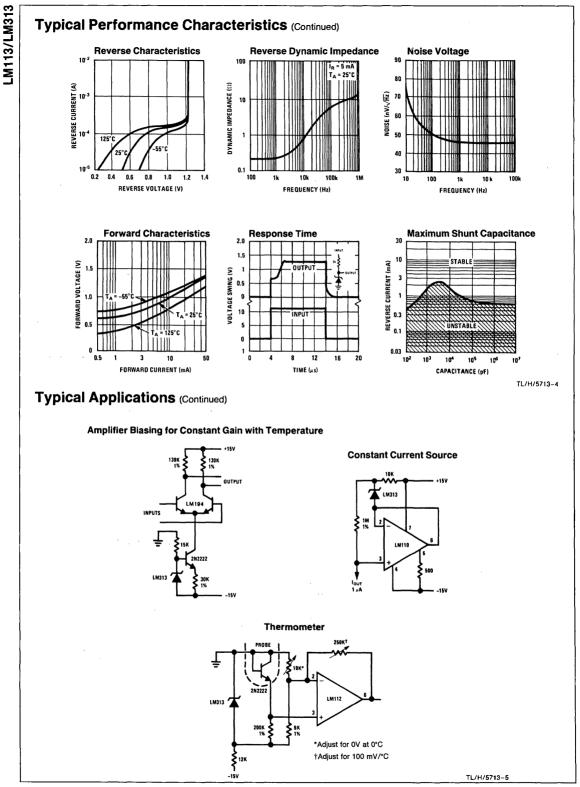
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 3)

Power Dissipation (Note 1)	100 mW
Reverse Current	50 mA
Forward Current	50 mA

Storage Temperature Range	-65°C to +150°C
Lead Temperature	
(Soldering, 10 seconds)	300°C
Operating Temperature Range	
LM113	-55°C to + 125°C
LM313	0°C to +70°C

Electrical Characteristics (Note 2)


Parameter	Conditions	Min	Тур	Max	Units
Reverse Breakdown Voltage LM113/LM313 LM113-1 LM113-2	I _R = 1 mA	1.160 1.210 1.195	1.220 1.22 1.22	1.280 1.232 1.245	v v v
Reverse Breakdown Voltage Change	0.5 mA ≤ I _R ≤ 20 mA	1.100	6.0	15	mV
Reverse Dynamic Impedance	I _R = 1 mA I _R = 10 mA		0.2 0.25	1.0 0.8	Ω Ω
Forward Voltage Drop	I _F = 1.0 mA		0.67	1.0	v
RMS Noise Voltage	10 Hz ≤ f ≤ 10 kHz I _R = 1 mA		5		μV
Reverse Breakdown Voltage Change with Current	$0.5 \text{ mA} \le I_R \le 10 \text{ mA}$ $T_{MIN} \le T_A \le T_{MAX}$			15	mV
Breakdown Voltage Temperature Coefficient	$1.0 \text{ mA} \le I_{R} \le 10 \text{ mA}$ $T_{MIN} \le T_{A} \le T_{MAX}$		0.01		%/°C


Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction and a thermal resistance of 80°C/W junction to case or 440°C/W junction to ambient.

Note 2: These specifications apply for $T_A = 25^{\circ}C$, unless stated otherwise. At high currents, breakdown voltage should be measured with lead lengths less than $\frac{1}{4}$ inch. Kelvin contact sockets are also recommended. The diode should not be operated with shunt capacitances between 200 pF and 0.1 μ F, unless isolated by at least a 100 Ω resistor, as it may oscillate at some currents.

Note 3: Refer to the following RETS drawings for military specifications: RETS113-1X for LM113-1, RETS113-2X for LM113-2 or RETS113X for LM113.

Typical Performance Characteristics

7-18