

LM140QML

www.ti.com

SNVS382A - FEBRUARY 2006 - REVISED APRIL 2008

LM140QML Three Terminal Positive Regulators

Check for Samples: LM140QML

FEATURES

- Complete Specifications at 1.0A and 0.5A Loads
- No External Components
- Internal Thermal Overload Protection
- Internal Short Circuit Current-Limiting
- Output Transistor Safe-Area Compensation

DESCRIPTION

The monolithic 3-terminal positive voltage regulators employ internal current-limiting, thermal shutdown and safe-area compensation. making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

Considerable effort was expended to make the entire series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

Connection Diagram

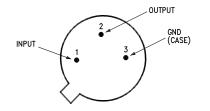
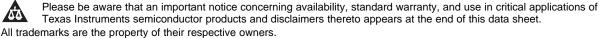
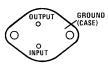




Figure 1. Steel Metal Can TO-39 Package (NDT) Bottom View See Package Number NDT0003A

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Figure 2. TO-3 Metal Can (K) Bottom View See Package Number K0002C

Absolute Maximum Ratings⁽¹⁾

DC Input Voltage			35V
Internal Power Dissipation ⁽²⁾			Internally Limited
Maximum Junction Temperature	e (T _{Jmax)}		150°C
Storage Temperature Range			$-65^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +150^{\circ}\text{C}$
Operating Temperature Range			$-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$
Lead Temperature (Soldering 10	300°C		
		T0-39 (Still Air)	232°C/W
	0	T0-39 (500 LF/Min Air Flow)	77°C/W
Thermal Resistance	θ _{JA}	T0-3 (Still Air)	35°C/W
Thermal Resistance		T0-3 (500 LF/Min Air Flow)	TBD
	•	T0-39	15°C/W
	θ_{JC}	T0-3	4°C/W
ESD Susceptibility ⁽³⁾			2KV

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not specify specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), (2) θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. Human body model, 100pF discharged through 1.5K Ω

(3)

Quality Conformance Inspection

MIL-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at	+125
14	Settling time at	-55

SNVS382A-FEBRUARY 2006-REVISED APRIL 2008

www.ti.com

LM140H–5.0 Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. DC: $V_1 = 10V$, $I_1 = 350mA$

Symbol	Parameter	Conditions	Notes	Min	Мах	Unit	Sub- groups
Vo		$V_{I} = 35V, I_{L} = 5mA$		4.75	5.75	V	1
				4.80	5.20	V	1
		V ₁ = 8V		4.70	5.30	V	1, 2, 3
	Output Voltage	$V_{I} = 8V, I_{L} = 5mA$		4.70	5.30	V	1, 2, 3
		$V_{I} = 20V, I_{L} = 5mA$		4.70	5.30	V	1, 2, 3
		V _I = 20V		4.70	5.30	V	1, 2, 3
R _{Line}		$7V \le V_I \le 25V, I_L = 200 \text{mA}$		-50	50	mV	1
	Line Devide field	$8V \le V_{I} \le 25V, I_{L} = 200mA$		-50	50	mV	2, 3
	Line Regulation	$8V \le V_I \le 20V, I_L = 200mA$		-25	25	mV	1
				-40	40	mV	2, 3
R _{Load}		$5mA \le I_L \le 500mA$		-50	50	mV	1
	Las d Danida (fa a			-100	100	mV	2, 3
	Load Regulation			-25	25	mV	1
		$5mA \le I_L \le 200mA$		-50	50	mV	2, 3
l _Q	Quiescent Current				7.0	mA	1, 2, 3
Δl _Q		$8V \le V_I \le 25V, I_L = 200mA$		-0.8	0.8	mA	1, 2, 3
	Quiescent Current Change	$5mA \le I_L \le 350mA$		-0.5	0.5	mA	1, 2, 3
I _{Pk}	Peak Current	$V_{I} - V_{O} = 7V$	See ⁽¹⁾	0.4	2.0	А	1, 2, 3
V _{DO}	Dropout Voltage		See ⁽²⁾		2.5	V	1
I _{OS}	Short Circuit Current	V ₁ = 35V			1.0	А	1, 2, 3

 $\begin{array}{ll} \mbox{(1)} & V_O \mbox{ is set to } 90\% \ V_{Ref} \\ \mbox{(2)} & V_{DO} = V_I - V_O \ \mbox{when } V_O \ \mbox{is } 95\% \ \mbox{of } V_{Ref}. \end{array}$

LM140H–5.0 Electrical Characteristics AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_1 = 10V$, $I_L = 350mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$I_L = 125$ mA, $e_I = 1V_{RMS}$, $f = 2.4$ KHz, $V_I = 10V$		62		dB	4, 5, 6

LM140H–12 Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. DC: V_I = 19V, I_L =350mA

Symbol	Parameter	Conditions	Notes	Min	Мах	Unit	Sub- groups
Vo		$V_{I} = 35V, I_{L} = 5mA$		11.4	12.6	V	1
				11.5	12.5	V	1
	Output Maltana	V _I = 15.5V		11.4	12.6	V	1, 2, 3
	Output Voltage	$V_{I} = 15.5V, I_{L} = 5mA$		11.4	12.6	V	1, 2, 3
		$V_{I} = 27V, I_{L} = 5mA$		11.4	12.6	V	1, 2, 3
		V ₁ = 27V		11.4	12.6	V	1, 2, 3
R _{Line}		$14.5V \le V_{I} \le 30V, I_{L} = 200mA$		-60	60	mV	1
	Line Develotion	$15.0V \le V_{I} \le 30V, I_{L} = 200mA$		-120	120	mV	2, 3
	Line Regulation	$16V \le V_I \le 25V, I_L = 200mA$		-30	30	mV	1
				-60	60	mV	2, 3
R _{Load}				-120	120	mV	1
	Les d De sude fiere	$5mA \le I_L \le 500mA$		-240	240	mV	2, 3
	Load Regulation			-60	60	mV	1
		$5mA \le I_L \le 200mA$		-120	120	mV	2, 3
l _Q	Quiescent Current				7.0	mA	1, 2, 3
Δl _Q		$14.5V \le V_{I} \le 30V, I_{L} = 200mA$		-0.8	0.8	mA	1, 2, 3
	Quiescent Current Change	$5mA \le I_L \le 350mA$		-0.5	0.5	mA	1, 2, 3
I _{Pk}	Peak Current	V ₁ - V ₀ = 7V	See ⁽¹⁾	0.4	2.0	А	1, 2, 3
V _{DO}	Dropout Voltage		See ⁽²⁾		2.5	V	1
los	Short Circuit Current	V ₁ = 35V			1.0	А	1, 2, 3

 $\begin{array}{ll} \mbox{(1)} & V_O \mbox{ is set to } 90\% \ V_{Ref} \\ \mbox{(2)} & V_{DO} = V_I - V_O \ \mbox{when } V_O \ \mbox{is } 95\% \ \mbox{of } V_{Ref}. \end{array}$

LM140H–12 Electrical Characteristics AC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$V_I = 17V$, $I_L = 125mA$, $e_I = 1V_{RMS}$, $f = 2.4KHz$		55		dB	4, 5, 6

SNVS382A-FEBRUARY 2006-REVISED APRIL 2008

LM140H–15 Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. DC: V_I = 23V, I_L =350mA

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
Vo		$V_{I} = 35V, I_{L} = 5mA$		14.25	15.75	V	1
				14.40	15.60	V	1
	Quite ut Malta an	V _I = 18.5V		14.25	15.75	V	1, 2, 3
	Output Voltage	$V_{I} = 18.5V, I_{L} = 5mA$		14.25	15.75	V	1, 2, 3
		$V_{I} = 30V, I_{L} = 5mA$		14.25	15.75	V	1, 2, 3
		V _I = 30V		14.25	15.75	V	1, 2, 3
R _{Line}		$17.5V \le V_{I} \le 30V, I_{L} = 200mA$		-60	60	mV	1
	Line Devulation	$18.5V \le V_{I} \le 30V, I_{L} = 200mA$		-120	120	mV	2, 3
	Line Regulation	$20V \le V_I \le 30V, I_L = 200mA$		-30	30	mV	1
				-60	60	mV	2, 3
R _{Load}		$5mA \le I_L \le 500mA$		-150	150	mV	1
	Lood Devide Con			-300	300	mV	2, 3
	Load Regulation			-75	75	mV	1
		$5mA \le I_L \le 200mA$		-150	150	mV	2, 3
l _Q	Quiescent Current				7.0	mA	1, 2, 3
Δl _Q		$17.5V \le V_{I} \le 30V, I_{L} = 200mA$		-0.8	0.8	mA	1, 2, 3
	Quiescent Current Change	$5mA \le I_L \le 350mA$		-0.5	0.5	mA	1, 2, 3
I _{Pk}	Peak Current	V _I - V _O = 7V	See ⁽¹⁾	0.4	2.0	А	1, 2, 3
V _{DO}	Dropout Voltage		See ⁽²⁾		2.5	V	1
I _{OS}	Short Circuit Current	V ₁ = 35V			1.0	А	1, 2, 3

(1) V_O is set to 90% V_{Ref} (2) V_{DO} = V_I - V_O when V_O is 95% of V_{Ref}.

LM140H–15 Electrical Characteristics AC Parameters

The following conditions apply, unless otherwise specified.

AC: V_I = 23V, I_L =350mA

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	V _I =20V, I _L =125mA, e _I =1V _{RMS} , <i>f</i> = 2.4KHz		54		dB	4, 5, 6

SNVS382A -FEBRUARY 2006-REVISED APRIL 2008

www.ti.com

LM140K–5.0 Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. DC: $V_I = 10V$, $I_L = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
l _Q	Quieseent Current	1 10			6.0	mA	1
	Quiescent Current	$I_{L} = 1A$			7.0	mA	2, 3
ΔQ		$I_L = 1A, 8V \le V_I \le 20mA$		-0.8	0.8	mA	1
	Quiescent Current Change	$I_L \le 500 \text{mA}, 8 \text{V} \le \text{V}_I \le 25 \text{V}$		-0.8	0.8	mA	1, 2, 3
		$5mA$, $\leq I_L \leq 1.0A$		-0.5	0.5	mA	1, 2, 3
Vo				4.80	5.20	V	1
		$V_I = 8V$		4.75	5.25	V	1, 2, 3
	Output Voltage	$V_{I} = 8V, I_{L} = 1A$		4.75	5.25	V	1, 2, 3
		$V_I = 20V$		4.75	5.25	V	1, 2, 3
		$V_{I} = 20V, I_{L} = 1A$		4.75	5.25	V	1, 2, 3
R _{Line}		$I_L = 500 \text{mA}, 7 \text{V} \le \text{V}_I \le 25 \text{V}$		-50	50	mV	1, 2, 3
	Line Deculation	$I_L = 1A, 7.3V \le V_I \le 20V$		-50	50	mV	1
	Line Regulation	$I_{L} = 1A, 8.0V \le V_{I} \le 20V$		-50	50	mV	2, 3
		$I_L = 1A, 8V \le V_I \le 12V$		-25	25	mV	1, 2, 3
R _{Load}		$5mA \le I_L \le 1.5A$		-50	50	mV	1
	Load Regulation	$5mA \le I_L \le 1.0A$		-50	50	mV	2, 3
		$250\text{mA} \le \text{I}_{\text{L}} \le 750\text{mA}$		-25	25	mV	1
I _{OS}	Ourse set Lissit			-4.0	-0.02	А	1
	Current Limit	V ₁ = 35V		-2.0	-0.02	А	1

LM140K–5.0 Electrical Characteristics AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_1 = 10V$, $I_L = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	f = 120Hz, I _L = 350mA, e _I = 1V _{RMS}		68		dB	4

SNVS382A - FEBRUARY 2006 - REVISED APRIL 2008

www.ti.com

LM140K–12 Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. DC: V_I = 19V, I_L = 5mA

Symbol	Parameter	Conditions	Notes	Min	Мах	Unit	Sub- groups
l _Q	Ouissesset Current				6.0	mA	1
	Quiescent Current	$I_L = 1A$			7.0	mA	2, 3
Δl _Q		$I_L = 1A, 15.5V \le V_I \le 27V$		-0.8	0.8	mA	1
	Quiescent Current Change	$I_{L} = 500 \text{mA} \ 15 \text{V} \le \text{V}_{I} \le 30 \text{V}$		-0.8	0.8	mA	1, 2, 3
		$5mA \le I_L \le 1A$		-0.5	0.5	mA	1, 2, 3
Vo				11.5	12.5	V	1
		V ₁ = 15.5V		11.4	12.6	V	1, 2, 3
	Output Voltage	$V_{I} = 15.5V, I_{L} = 1A$		11.4	12.6	V	1, 2, 3
		$V_1 = 27V$		11.4	12.6	V	1, 2, 3
		$V_{I} = 27V, I_{L} = 1A$		11.4	12.6	V	1, 2, 3
R _{Line}		$I_L = 500 \text{mA}, \ 14.5 \text{V} \le \text{V}_I \le 25 \text{V}$		-120	120	mV	1, 2, 3
	Line Deculation	$I_L = 1A, 14.6V \le V_I \le 27V$		-120	120	mV	1
	Line Regulation	$I_L = 1A, 15.0V \le V_I \le 27V$		-120	120	mV	2, 3
		$I_L = 1A, 16V \le V_I \le 22V$		-60	60	mV	1, 2, 3
R _{Load}		$5mA \le I_L \le 1.5A$		-120	120	mV	1
	Load Regulation	$5mA \le I_L \le 1.0A$		-120	120	mV	2, 3
		$250mA \le I_L \le 750mA$		-60	60	mV	1
I _{OS}	Current Limit	V ₁ = 17V		-3.5	-0.02	А	1
	Current Limit	V ₁ = 35V		-2.0	-0.02	А	1

LM140K–12 Electrical Characteristics AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_1 = 19V$, $I_L = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	f = 120Hz, I _L = 350mA, e _I = 1V _{RMS}		61		dB	4

LM140K–15 Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. DC: $V_I = 23V$, $I_L = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
l _Q	Ouissesset Current				6.0	mA	1
	Quiescent Current	$I_L = IA$			7.0	mA	2, 3
Δl _Q		$I_{L} = 1A, 18.5V \le V_{I} \le 30V$		-0.8	0.8	mA	1
	Quiescent Current Change	$I_{L} = 500 \text{mA}, \ 18.5 \text{V} \le \text{V}_{\text{I}} \le 30 \text{V}$		-0.8	0.8	mA	2, 3
		$5mA \le I_L \le 1A$		-0.5	0.5	mA	1, 2, 3
Vo				14.4	15.6	V	1
		tion $ \frac{I_{L} = 1A, 18.5V \le V_{I} \le 30V}{I_{L} = 500 \text{mA}, 18.5V \le V_{I} \le 30V} = \frac{1}{12} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12} + $	14.25	15.75	V	1, 2, 3	
	Output Voltage	$V_{I} = 18.5V, I_{L} = 1A$	$SV \le V_1 \le 30V -0$ $18.5V \le V_1 \le 30V -0$ $14 -00$ 144 144 144 144 144 144 144 144 144 144 144 145 144 144 145 144 145	14.25	15.75	V	1, 2, 3
		$V_1 = 30V$		14.25	15.75	V	1, 2, 3
		$V_{I} = 30V, I_{L} = 1A$		14.25	15.75	V	1, 2, 3
R _{Line}		$I_L = 500 \text{mA}, 17.5 \text{V} \le \text{V}_I \le 30 \text{V}$		-150	150	mV	1
	Line Devulation	$I_L = 500 \text{mA}, \ 18.5 \text{V} \le \text{V}_{\text{I}} \le 30 \text{V}$		-150	150	mV	2, 3
	Line Regulation	$I_{L} = 1A, 17.7V \le V_{I} \le 30V$		-75	75	mV	1
		$I_L = 1A, 20V \le V_I \le 26V$		-75	75	mV	1, 2, 3
R _{Load}		$5mA \le I_L \le 1.5A$		-150	150	mV	1
	Load Regulation	$5\text{mA} \le I_L \le 1.0\text{A}$		-150	150	mV	2, 3
		$250\text{mA} \le \text{I}_{\text{L}} \le 750\text{mA}$		-75	75	mV	1
I _{OS}	Ourseast Linsit	V ₁ = 20V		-3.5	-0.02	А	1
	Current Limit	V ₁ =35V		-2.0	-0.02	А	1

LM140K–15 Electrical Characteristics AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_1 = 23V$, $I_L = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	f = 120Hz, I _L = 350mA, e _I = 1V _{RMS}		60		dB	4

SNVS382A - FEBRUARY 2006 - REVISED APRIL 2008

REVISION HISTORY SECTION

	Released	Revision	Section	Originator	Changes
	02/21/06	A	New Release, Corporate format	L. Lytle	6 MDS data sheets converted into one Corp. data sheet format. The drift tables were eliminated from the 883 section since it did not apply. MDS data sheets MNLM140-05H Rev 0B0, MNLM140-05-K Rev. 0C0, MNLM140-12H Rev 0A0, MNLM140-12K Rev 0B0, MNLM140- 15H Rev 0A0, and MNLM140-15K Rev 0B0 will be archived.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
LM140H-12/883	ACTIVE	то	NDT	3	20	TBD	Call TI	Call TI	0010120	LM140H-12/883 Q ACO LM140H-12/883 Q >T	Samples
LM140H-15/883	ACTIVE	то	NDT	3	20	TBD	Call TI	Call TI	0010120	LM140H-15/883 Q ACO LM140H-15/883 Q >T	Samples
LM140H-5.0/883	ACTIVE	то	NDT	3	20	TBD	Call TI	Call TI		LM140H-5.0/883 Q ACO LM140H-5.0/883 Q >T	Samples
LM140K-12/883	ACTIVE	то	К	2	50	TBD	Call TI	Call TI		LM140K-12 /883 Q ACO /883 Q >T	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

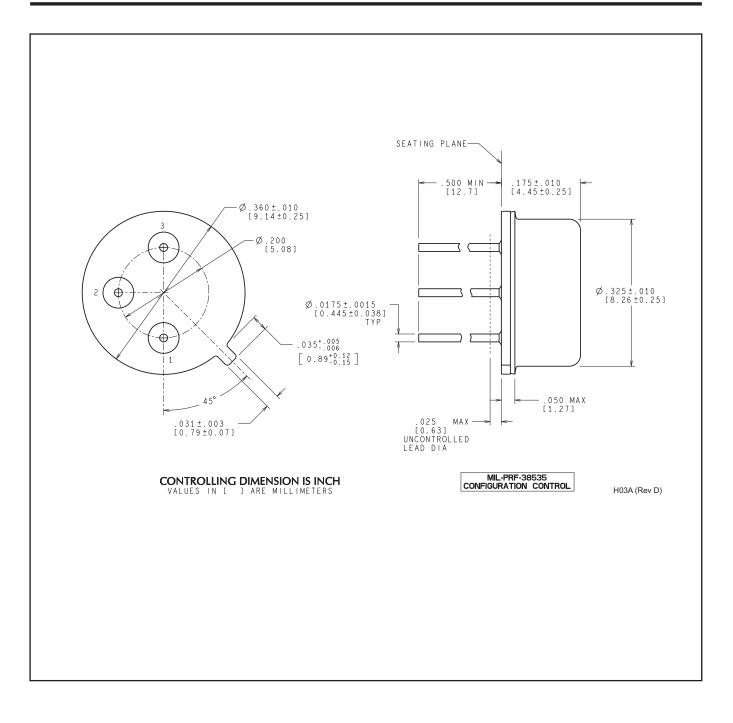
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

9-Mar-2013

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated