

LM1837

DUAL LOW NOISE TAPE PREAMPLIFIER WITH AUTOREVERSE

- PROGRAMMABLE TURN-ON DELAY
- TRANSIENT-FREE MUTING AND POWER-UP – NO POPS
- LOW-NOISE 0.6 µV CCIR/ARM
- HIGH POWER SUPPLY REJECTION 95dB
- LOW DISTORTION 0.03% AND HIGH SLEW RATE $6V/\mu s$
- SHORT CIRCUIT PROTECTION
- INTERNAL DIODES FOR DIODE SWITCH-ING APPLICATIONS

The LM1837 is a dual autoreversing high gain tape preamplifier for applications requiring optimum noise performance. It has forward (left, right)

Fig. 1 - Autotoreversing tape plyback application

and reverse (left, right) inputs which are selectable through a high impedance logic pin. It is an ideal choice for a tape playback amplifier when a combination of low noise, autoreversing, good power supply rejection, and no power-up transients are desired. The application also provides transient-free muting with a single pole grounding switch.

ABSOLUTE MAXIMUM RATINGS

Vs	Supply voltage Voltage on pins 1 and 18	18 18	V V
P _{tot} T _{eta}	Package dissipation Storage temperature	-65 to 150	°C
T _{op}	Operating temperature	0 to 70	°C
	Minimum voltage on any pin	-0.1	V

CONNECTION DIAGRAM

(top view)

RIGHT DIODE OUTPUT	[] 1	16	LEFT DIODE OUTPUT
RIGHT OUTPUT	[2	17	LEFT OUTPUT
R(+)IN	[3	16]	L (+)IN
R (-) IN	[4	15	L (-)1N
RIGHT X25 OUT	5	14	LEFT X25 OUT
BIAS	6	13]	LOGIC
RIGHT FORWARD	7	12	LEFT FORWARD
RIGHT REVERSE	[8	11	LEFT REVERSE
∗۷ _s	[9	10]	GND
	L	5 - 6446	

SCHEMATIC DIAGRAM

THERMAL DATA

R _{th j-amb}	Thermal resistance junction-ambient	max	90	°C/W

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C, V_S = 12V, see test circuits)

	Parameter	Test conditions	Min,	Тур.	Max.	Unit
∨s	Supply voltage	R5 removed from circuit for low voltage operation	4		18	V
Is	Supply current	V _S = 12V		9	15	mA
d	Total harmonic distortion	f = 1KHz V _i = 0.3mV pins 2 and 17, see test circuit		0.03		%
	THD + noise (note 1)	f = 1KHz V _o = 1V pins 2 and 17, see test circuit		0.1	0.25	%
SVR	Power supply rejection	input ref. f = 1KHz, 1 Vrms	80	95		dB
Cs	Channel separation (note 2)	f = 1KHz, output = 1 Vrms Output to output				
	Left to right Forward to reverse		40 40	60 60		dB dB
S/N	Signal-to-noise (note 3)	Unweighted 32Hz - 12.74 KHz (note 1) CCIR/ARM (note 4) A weighted CCIR, peak (note 5)		58 62 64 52		dB dB dB dB
eN	Noise	Output voltage CCIR/ARM (note 4)		120	200	μV

INPUT AMPLIFIERS

1 _b	Input bias current			0.5	2	μA
	Input impedance	f = KHz	150			KΩ
	AC gain		27	28	29	dB
	AC gain imbalance			± 0.15	± 0.5	dB
Vo	DC output voltage		2.1	2.5	2.9	V
Vo	Output voltage mismatch	pins 5 and 14	- 200	30	200	mV
1o+	Output source current	pins 5 and 14	2	10		mA
10-	Output sink current	Pins 5 and 14	300	600		μA

LOGIC LEVEL

Forward				0.5	V
Reverse		2.2			V
Logic pin current			2	6	μA
DC voltage change at pins 5 and 14	Change logic state	-100	20	100	mV

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Тур.	Max.	Unit
-----------	-----------------	------	------	------	------

OUTPUTS AMPLIFIERS

	Closed loop gain	stable operation	5			V/V
Gv	Open loop voltage gain	DC		100		dB
	Gain bandwidth product			5		MHz
	Slew rate			6		V/µs
Vos	Input offset voltage			2	5	mV
los	Input offset current			20	100	nA
1	Input bias current			250	500	nA
10+	Output source current	Pin 2 or 17	2	10		mA
10-	Output sink current	Pin 2 or 17	400	900		μA
٧ ₀	Output voltage swing	Pin 2 or 17		11		Vp-p
	Output diode leakage	Voltage on pins 1 and 18 = 18V		0	10	μА

Note:

- 1 Measured with an average responding voltmeter using the filter circuit in figure 4. This simple filter is approximately equivalent a "brick wall" filter with a passband of 20Hz to 20KHz (see Application Hints). For 1KHz THD the 400Hz high pass filter on the distortion analyzer is used.
- 2 Channel separation can be measured by applying the input signal through transformers to simulate a floating source (see Application Hints). Care must be taken to shield the coils from extraneous signal. Actual production test techniques simulate this floating source with a more complex op amp circuit.
- 3 The numbers are referred to an output level of 160mV at pins 2 and 17 using the circuit figure 2. This corresponds
- 4 Measured with an average responding voltmeter using the Dolby lab's standard CCIR filter having a unity gain reference 2KHz.
- 5 Measured using the Rhode-Schwartz psophometer, mode UPGR.

Fig. 2 - Test circuit

Fig. 3 – Input amplifier distortion vs. input level

Fig. 4 – Input amplifier gain and phase vs frequency

SGS-THOMSON

Fig. 5 – Output amplifier open loop gain and phase vs. frequency

Fig. 9 - Turn-on delay vs. component values and gain

Fig. 10 SVR vs. frequency

Fig. 11 - SVR vs. supply voltage

6-5155

5K f (Hz)

Fig. 12 - I_S vs. V_S

Fig. 13 - Rigth to left channel separation vs. frequency

Fig. 14 - Forward to reverse channel separation vs. frequency

Fig. 15 - Input amplifier Fig. 16 - Frequency re-DC output voltage vs. temsponse of test circuit perature (pins 5, 4) G-5162 G - 5163 () (dB) 2.5 70 2.0 60 1.5 50 1.0 40 0.5 0 30 -50 -25 0 25 50 75 100 Ti(*C) 20 50 100 200 500 16 26 5K 10K f(Hz)

Fig. 17 - Simple 32Hz - 12740Hz filter and meter

APPLICATION INFORMATION

EXTERNAL COMPONENTS (Figures 1 and 18)

Component	Normal Range of Value and Function
R1, C2 and R12, C9	$2K\Omega - 40K\Omega$, 0.1μ F -10μ F (low leakage). Set turn-on delay and second amplifier's low frequency pole. Leakage current in C2 results in DC offset between the amplifier's inputs and therefore this current should be kept low. R1 is set equal to R2 such that any input offset voltage due to bias current is effectively cancelled. An input offset voltage is generated by the input offset current multiplied by the value of these resistors.
R2, R3 and R13, R10	$2K\Omega - 40K\Omega$, $500K\Omega - 10K\Omega$. Set the DC and frequency gain of the output amplifier. The total input offset voltage will also be multiplied by the DC gain of this amplifier. They are threfore essential to keep the input offset voltage specification in mind when employing high DC gain in the output amplifier; i.e., $5mV \times 400 = 2V$ offset at the output.
R4, C1 and R11, C8	$10K\Omega - 200K\Omega$, 470pF to 10nF. Set tape playback equalization characteristics in conjunction with R3 (calculations for the component values are included in the application (Hints section).
R6, R8	$2K\Omega - 47K\Omega$. Blas the output diode in DC switching applications. These resistors can be excluded if diode switching is not desired.
C3C6	100pF-1000pF Often used to resonate with tape head in order to compensate for tape playback losses including tape head gap and eddy current. For a typical cassette tape head, the resonant frequency selected is usually between 13KHz and 17KHz.
R5, R14	$100 K\Omega$ -10M Ω . Increase the output DC bias voltage from the nominal 2.5V value (see Application information).
R7, R9	Optionally used for tape muting. The use of these resistor can also provide "no-pop" turn-off if desired (see Application information).

LM1837

APPLICATION INFORMATION (continued)

Fig. 19 - P.C. board and components layout of the circuit of Fig. 18 (1 : 1 scale)

8/8