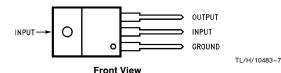


LM79MXX Series 3-Terminal Negative Regulators

General Description

The LM79MXX series of 3-terminal regulators is available with fixed output voltages of $-5\mathrm{V}, -12\mathrm{V},$ and $-15\mathrm{V}.$ These devices need only one external component—a compensation capacitor at the output. The LM79MXX series is packaged in the TO-220 power package, and is capable of supplying 0.5A of output current.

These regulators employ internal current limiting, safe area protection, and thermal shotdown for protection against virtually all overload conditions.


Low ground pin current of the LM79MXX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode. For output voltage other than -5V, -12V, and -15V the LM137 series provides an output voltage range from -1.2V to -57V

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 0.5A output current
- 4% tolerance on preset output voltage

Connection Diagram

TO-220 Plastic Package (T)

Order Number LM79M05CT, LM79M12CT or LM79M15CT See NS Package Number T03B

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Input Voltage $V_O = -5V$ $V_O = -12V, -15V$ −25V −35V

Input/Output Differential

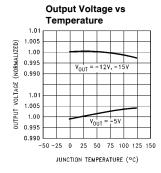
 $V_0 = -5V$ $V_0 = -12V, -15V$ 25V 30V

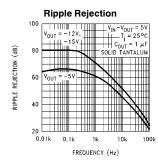
Power Dissipation (Note 2) Internally Limited Operating Junction Temperature Range 0°C to +125°C Storage Temperature Range -65°C to $+150^{\circ}\text{C}$ Lead Temperature (Soldering, 10 sec.) 230°C ESD Susceptability TBD

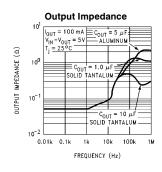
Electrical Characteristics LM79M05C

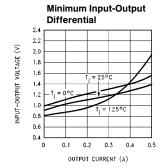
Conditions unless otherwise noted: I_{OUT} = 350 mA, C_{IN} = 2.2 $\mu\text{F}, \, \text{C}_{OUT} = 1 \, \mu\text{F}, \, 0^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125^{\circ}\text{C}$

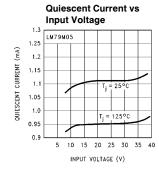
Part Number			LM79M05C			- Units
Output Voltage Input Voltage (Unless Otherwise Specified)			−5V −10V			
V _O	Output Voltage	$T_{J} = 25^{\circ}C$	-4.8	-5.0	-5.2	V
		$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	-4.75 (-	25 ≤ V _{IN} ≤ −	-5.25 7)	V
ΔV _O	Line Regulation	T _J = 25°C (Note 3)	(-	8 -25 ≤ V _{IN} ≤ − 2	50 7) 30	mV mV
			(-	$18 \le V_{IN} \le -$	8)	
ΔV_{O}	Load Regulation	$T_J = 25$ °C, (Note 3) 5 mA $\leq I_{OUT} \leq 0.5$ A		30	100	mV
IQ	Quiescent Current	$T_{J} = 25^{\circ}C$		1	2	mA
ΔI_Q	Quiescent Current Change	With Input Voltage $\label{eq:with Load} With Load, \\ 5 \ \text{mA} \leq I_{OUT} \leq 350 \ \text{mA}$	(-	$-25 \le V_{IN} \le -$	0.4	mA mA
Vn	Output Noise Voltage	$T_A=25^{\circ}C$, $10~Hz\leq f\leq 100~Hz$		150		μV
	Ripple Rejection	f = 120 Hz	54 (-	66 -18 ≤ V _{IN} ≤ −	8)	dB
	Dropout Voltage	$T_{J} = 25^{\circ}C, I_{OUT} = 0.5A$		1.1		V
I _{OMAX}	Peak Output Current	$T_J = 25^{\circ}C$		800		mA
	Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA},$ $0^{\circ}\text{C} \leq T_{J} \leq 100^{\circ}\text{C}$		-0.4		mV/°C

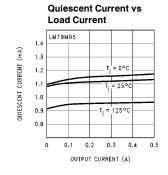

Electrical Characteristics LM79M12C, LM79M15C Conditions unless otherwise noted: $I_{OUT}=350$ mA, $C_{IN}=2.2$ $\mu\text{F},$ $C_{OUT}=1$ $\mu\text{F},$ $0^{\circ}\text{C} \leq T_{J} \leq +125^{\circ}\text{C}$

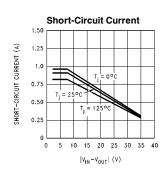

Part Number Output Voltage Input Voltage (Unless Otherwise Specified)			LM79M12C - 12V - 19V		LM79M15C - 15V - 23V			- Units										
									Symbol	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	
									Vo	Output Voltage	$T_{J} = 25^{\circ}C$	-11.5	-12.0	-12.5	-14.4	-15.0	-15.6	V
		5 mA ≤ I _{OUT} ≤ 350 mA	-11.4 (-27	≤ V _{IN} ≤ −	- 12.6 - 14.5)	-14.25 (-30	≤ V _{IN} ≤ -	15.75 10.5)	٧									
ΔVO	Line Regulation	T _J = 25°C (Note 3)		$ \begin{array}{c} 5 \\ \le V_{IN} \le - \\ 3 \\ 5 \le V_{IN} \le - \end{array} $	50		$ 5 \\ 0 \le V_{IN} \le -3 \\ 8 \le V_{IN} \le 3 $	50	mV mV									
ΔV _O	Load Regulation	$T_J = 25$ °C, (Note 3) 5 mA $\leq I_{OUT} \leq 0.5$ A		30	240		30	240	mV									
IQ	Quiescent Current	$T_{J} = 25^{\circ}C$		1.5	3		1.5	3	mA									
ΔI_Q	Quiescent Current Change	With Input Voltage With Load,	(-30	$\leq V_{IN} \leq -$	•	(-3	$0 \le V_{IN} \le$		mA									
V _n	Output Noise Voltage	$5 \text{ mA} \le I_{OUT} \le 350 \text{ mA}$ $T_A = 25^{\circ}\text{C},$ $10 \text{ Hz} \le f \le 100 \text{ Hz}$		400	0.4		400	0.4	mA μV									
	Ripple Rejection	f = 120 Hz	54 (-25	70 5 ≤ V _{IN} ≤ -	– 15)	54 (-30	70 ≤ V _{IN} ≤ -	- 17.5)	dB									
	Dropout Voltage	$T_{J} = 25^{\circ}C, I_{OUT} = 0.5A$		1.1			1.1		V									
I _{OMAX}	Peak Output Current	$T_{J} = 25^{\circ}C$		800			800		mA									
	Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5 \text{ mA},$ $0^{\circ}\text{C} \le T_{J} \le 100^{\circ}\text{C}$		-0.8			-1.0		mV/°C									

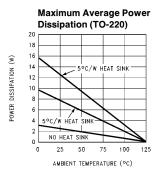

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. Note 2: Refer to Typical Performance Characteristics and Design Considerations for details.

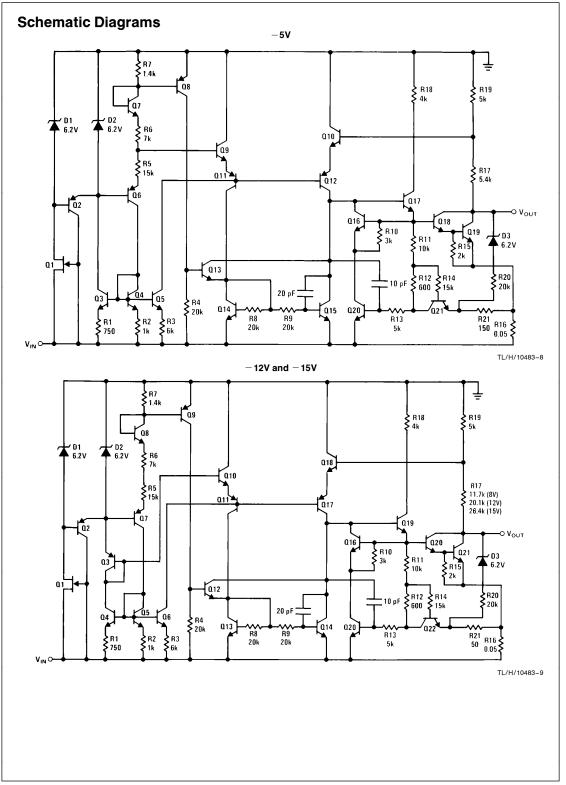

Note 3: Regulation is measued at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.


Typical Performance Characteristics









TL/H/10483-10

Design Considerations

The LM79MXX fixed voltage regulator series have thermaloverload protection from excessive power, internal short-circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	^θ JC (°C/W)	θJA (°C/W)		
TO-220	3	40		

$$\begin{split} P_{DMAX} &= \frac{T_{JMax} - T_{A}}{\theta_{JC} + \theta_{CA}} \text{or} \\ &= \frac{T_{JMax} - T_{A}}{\theta_{JA}} \text{ (Without a Heat Sink)} \end{split}$$

 $\theta_{CA} = \theta_{CS} + \theta_{SA}$

Solving for T_J:

$$T_J = T_A + P_D (\theta_{JC} + \theta_{CA}) \text{ or}$$

= $T_A = + P_D \theta_{JA}$ (Without a Heat Sink)

Where

T_J = Junction Temperature

 T_A = Ambient Temperature

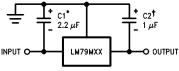
P_D = Power Dissipation

 $\theta_{\rm JC}$ = Junction-to-Case Thermal Resistance

 $\theta_{\text{CA}} = \text{Case-to-Ambient Thermal Resistance}$

 θ_{CS} = Case-to-Heat Sink Thermal Resistance

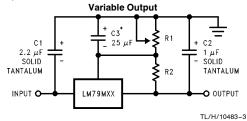
 θ_{SA} = Heat Sink-to-Ambient Thermal Resistance


 $\theta_{\mathsf{JA}} = \mathsf{Junction}\text{-to-Ambient Thermal Resistance}$

Typical Applications

Bypass capacitors are necessary for stable operation of the LM79MXX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator.

The bypass capacitors (2.2 μF on the input, 1.0 μF on the output), should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 μF or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals


Fixed Regulator

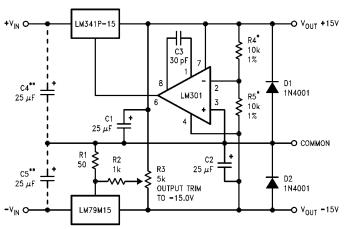
TL/H/10483-2

- *Required if regulator is separated from filter capacitor by more than 3". For value given, capacitor must be solid tantalum. 25 μ F aluminum electrolytic may be substituted.
- $\dagger \text{Required}$ for stability. For value given, capacitor must be solid tantalum. 25 μF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of 100 μ F, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

*Improves transient response and ripple rejection.

Do not increase beyond 50 μ F.

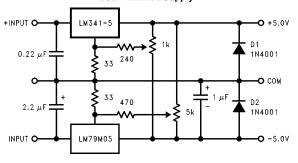

$$V_{OUT} = V_{SET} \left(\frac{R1 + R2}{R2} \right)$$

Select R2 as follows:

LM79M05C 300Ω LM79M12C 750Ω LM79M15C 1k

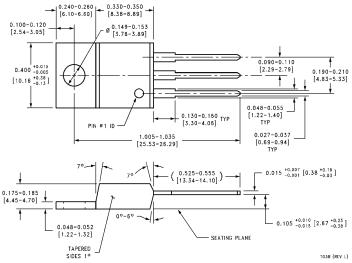
Typical Applications (Continued)

\pm 15V, 1 Amp Tracking Regulators


TL/H/10483-1

Performance (Typical)

	(<i>-</i> 15)	(+15)	
Load Regulation at 0.5A	40 mV	2 mV	
Output Ripple, $C_{IN} = 3000 \mu F$, $I_L = 0.5A$	100 μVrms	100 μ Vrms	
Temperature Stability	50 mV	50 mV	
Output Noise 10 Hz \leq f \leq 10 kHz	150 μVrms	150 μ Vrms	


- *Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs.
- **Necessary only if raw supply filter capacitors are more than 3" from regulators.

Dual Trimmed Supply

TL/H/10483-4

Physical Dimensions inches (millimeters)

TO-220 Plastic Package (T)
Order Number LM79M05CT, LM79M12CT or LM79M15CT
NS Package Number T03B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408