

LMX2323

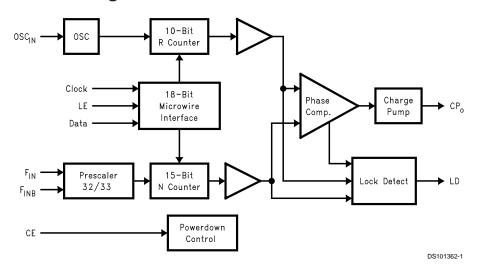
PLLatinum[™] 2.0 GHz Frequency Synthesizer for RF Personal Communications

General Description

The LMX2323 is a high performance frequency synthesizer with integrated 32/33 dual modulus prescaler designed for RF operation up to 2.0 GHz. Using a proprietary digital phase locked loop technique, the LMX2323's linear phase detector characteristics can generate very stable, low noise control signals for UHF and VHF voltage controlled oscillators.

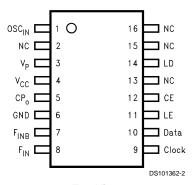
Serial data is transferred into the LMX2323 via a three-line MICROWIRE™ interface (Data, LE, Clock). Supply voltage range is from 2.7V to 5.5V. The LMX2323 features very low curent consumption, typically 3.5mA at 3V. The charge pump provides 4 mA output current.

The LMX2323 is manufactured using National's ABiC V BiCMOS process and is packaged in a 16-pin TSSOP.


Features

- RF operation up to 2.0 GHz
- 2.7V to 5.5V operation
- Low current consumption: Icc = 3.5mA (typ) at Vcc=3.0V
- Digital Lock Detect
- Dual modulus prescaler: 32/33
- Internal balanced, low leakage charge pump

Applications


- Cellular telephone systems (GSM, NADC, CDMA, PDC, PHS)
- Personal wireless communications (DCS-1800, DECT, CT-1+)
- Wireless local area networks (WLANs)
- DCS/PCS infrastructure equipment
- Other wireless communication systems

Functional Block Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation. MICROWIRE™ and PLLatinum™ are trademarks of National Semiconductor Corporation.

Connection Diagram

Top View
Order Number LMX2323TM, LMX2323TMX
See NS Package Number MTC16

Pin Descriptions

Pin No.	Pin Name	I/O	Description
1	OSC _{IN}	I	Oscillator input. A CMOS inverting gate input. The input has a $V_{\rm CC}/2$ input threshold and can be driven from an external CMOS or TTL logic gate.
3	V _P	_	Power supply for charge pump. Must be $\geq V_{CC}$.
4	V _{cc}	_	Power supply voltage input. Input may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
5	CPo	0	Internal charge pump output. For connection to a loop filter for driving the voltage control input of an external oscillator.
6	GND	_	Ground.
7	f _{INB}	I	RF prescaler complimentary input. In single-ended mode, a bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. The LMX2323 can be driven differentially when a bypass capacitor is omitted.
8	f _{IN}	I	RF prescaler input. Small signal input from the voltage controlled oscillator.
9	Clock	I	High impedance CMOS Clock input. Data is clocked in on the rising edge, into the various counters and registers.
10	Data	I	Binary serial data input. Data entered MSB first. LSB is control bit. High impedance CMOS input.
11	LE	Ī	Load Enable input. When Load Enable transitions HIGH, data is loaded into either the N or R register (control bit dependent). See timing diagram.
12	CE	I	PLL Enable. A LOW on CE powers down the device asynchronously and TRI-STATE®s the charge pump output.
14	LD	0	Lock detect output. This pin can be programmed to provide R counter output, N counter output, digital lock detect (CMOS logic) or analog lock detect (open drain).
2, 13, 15, 16	NC		No Connect.

Absolute Maximum Ratings (Note 1)

Voltage on Any Pin with

Recommended Operating Conditions (Note 1)

 $\begin{array}{ll} \mbox{Power Supply Voltage (V_{CC})} & 2.7\mbox{V to } 5.5\mbox{V} \\ \mbox{Power Supply for Charge pump (V_{P})} & V_{CC} \mbox{ to } 5.5\mbox{V} \\ \mbox{Operating Temperature (T_{A})} & -40\mbox{°C to } +85\mbox{°C} \\ \end{array}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Conditions indicate conditions for which the device is intended to be functional. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: This device is a high performance RF integrated circuit and is ESD sensitive. Handling and assembly of this device should be done on ESD protected workstations.

Electrical Characteristics

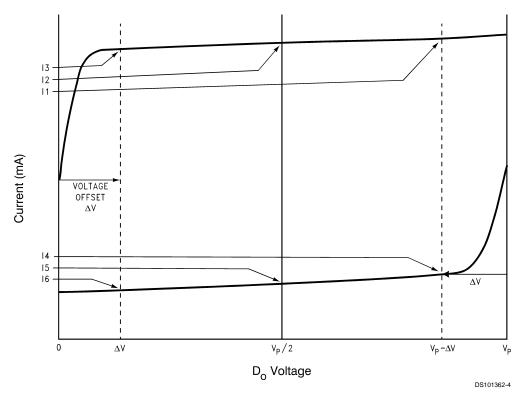
 V_{CC} = 3.0V, V_{P} = 3.0V; -40°C < T_{A} < 85°C except as specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
GENERAL					•	
I _{cc}	Power Supply Current	V _{CC} = 3.0V		3.5		mA
I _{cc}	1	V _{CC} = 2.7V to 5.5V			7.0	mA
I _{CC} -PWDN	1	V _{CC} = 5.5V (Note 3)		10	20	μΑ
f _{IN}	RF Operating Frequency		0.1		2.0	GHz
fosc	Oscillator Frequency		5		40	MHz
fφ	Phase Detector Frequency				10	MHz
Pf _{IN}	RF Input Sensitivity	2.7V≤Vcc≤ 3.0V	-15		0	dBm
		3.0 <vcc≤5.0v< td=""><td>-10</td><td></td><td>0</td><td>dBm</td></vcc≤5.0v<>	-10		0	dBm
V _{OSC}	Oscillator Sensitivity		0.4	0.8	V _{CC} -0.3	V _{PP}
	Phase Noise (Note 4)	$f_{IN} = 900 \text{ MHz}, V_{OSC} \ge 0.8 V_{PP}$		-86		
		$f_{IN} = 900 \text{ MHz}, V_{OSC} \ge 0.4 V_{PP}$		-82	(Note 6)	dBc/Hz
		f_{IN} = 1800 MHz, $V_{OSC} \ge 0.8 V_{PP}$		-82	(Note 6)	ubc/nz
		f_{IN} = 1800 MHz, $V_{OSC} \ge 0.4 V_{PP}$		-80		
CHARGE PL	JMP					
I _{CPo-source}	Charge Pump Output Current	$V_{CPo} = V_P/2$		-4.3		mA
I _{CPo-sink}	1	$V_{CPo} = V_P/2$		4.3		mA
I _{CPo-Tri}	Charge Pump TRI-STATE Current	$0.5 \le V_{CPo} \le V_P - 0.5$	-2.5		2.5	nA
I _{CPo} vs V _{CPo}	Charge Pump Output Current Magnitude Variation vs Voltage	$0.5 \le V_{CPo} \le V_{P} - 0.5$ $T_{A} = 25^{\circ}C$		10		%
I _{CPo-source} VS	Charge Pump Output Current Sink vs Source Mismatch	$V_{CPo} = V_P/2$ $T_A = 25^{\circ}C$		5		%
I _{CPo} vs T	Charge Pump Output Current Magnitude Variation vs Temperature	$V_{CPo} = V_P/2$		8		%
DIGITAL INT	ERFACE (DATA, CLK,LE, CE)					
V _{OH}	High-Level Output Voltage	I _{OH} = -500 μA	V _{CC} -0.4			V
V _{OL}	Low-Level Output Voltage	I _{OL} = -500 μA			0.4	V
V _{IH}	High-Level Input Voltage (Note 5)		0.8Vcc			V
V _{IL}	Low-Level Input Voltage (Note 5)				0.2Vcc	V
I _{IH}	High-Level Input Current (Clock, Data, Load Enable)	$V_{IH} = V_{CC} = 5.5V$	-1.0		1.0	μA
I _{IL}	Low-Level Input Current (Clock, Data, Load Enable)	$V_{IL} = 0, V_{CC} = 5.5V$	-1.0		1.0	μA
I _{IH}	Oscillator Input Current	$V_{IH} = V_{CC} = 5.5V$			100	μΑ
I _{IL}	Oscillator Input Current	$V_{IL} = 0, V_{CC} = 5.5V$	-100			μΑ

Electrical Characteristics (Continued)

 $V_{CC} = 3.0V$, $V_P = 3.0V$; $-40^{\circ}C < T_A < 85^{\circ}C$ except as specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
MICROWIRE	TIMING					
t _{CS}	Data to Clock Set Up Time	See Data Input Timing	50			ns
t _{CH}	Data to Clock Hold Time	See Data Input Timing	10			ns
t _{CWH}	Clock Pulse Width High	See Data Input Timing	50			ns
t _{CWL}	Clock Pulse Width Low	See Data Input Timing	50			ns
t _{ES}	Clock to Enable Set Up Time	See Data Input Timing	50			ns
t _{EW}	Enable Pulse Width	See Data Input Timing	50			ns


Note 3: This I_{CC}-PWDN represents CLK, DATA, LE and CE being tied to either higher than 0.8 V_{CC} or lower than 0.2 V_{CC}.

Note 4: Phase noise is measured 1 kHz off from the carrier frequency. Comparison frequency is 200 kHz. OSC_{IN} frequency is 13 MHz.

Note 5: Except f_{IN} and OSC_{IN}.

Note 6: Typical values are determined from measurements on the reference evaluation boards. A 3 dB (3 sigma) degradation is estimated from statistical distribution in manufacturing. Units will NOT be tested in production.

Charge Pump Current Specification Definitions

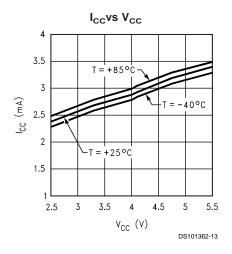
I1 = CP sink current at $VCP_0 = V_P - \Delta V$

I2 = CP sink current at $VCP_0 = V_P/2$

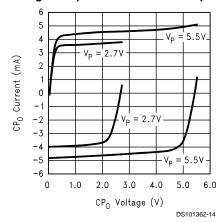
I3 = CP sink current at VCP $_{\rm O}$ = $\Delta {\rm V}$

I4 = CP source current at $VCP_0 = V_P - \Delta V$

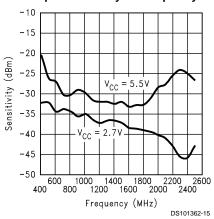
I5 = CP source current at $VCP_0 = V_P/2$

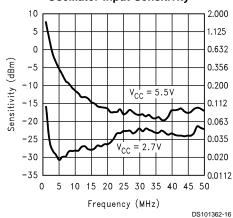

I6 = CP source current at VCP₀ = Δ V

 ΔV = Voltage offset from positive and negative rails. Dependent on VCO tuning range relative to V_{CC} and ground. Typical values are between 0.5V and 1.0V.


1. ICP_0 vs VCP_0 = Charge Pump Output Current magnitude variation vs Voltage =

2. ICP_{0-sink} vs ICP_{0-source} = Charge Pump Output Current Sink vs Source Mismatch = $[||2| - ||5|] / [|1/2| * {||12| + ||5|}] * 100\%$


Typical Performance Characteristics


Charge Pump Current vs VCPo Output

RF Input Sensitivity vs Frequency

Oscillator Input Sensitivity

1.0 Functional Description

The basic phase-lock-loop (PLL) configuration consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the National Semiconductor LMX2323, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, as well as programmable reference [R] and feedback [N] frequency dividers. The VCO frequency is established by dividing the crystal reference signal down via the R counter to obtain a frequency that sets the comparison frequency. This reference signal, f_r, is then presented to the input of a phase/frequency detector and compared with another signal, fp, the feedback signal, which was obtained by dividing the VCO frequency down by way of the N counter. The phase/frequency detector's current source outputs pump charge into the loop filter, which then converts the charge into the VCO's control voltage. The phase/frequency comparator's function is to adjust the voltage presented to the VCO until the feedback signal's frequency (and phase) match that of the reference signal. When this "phase-locked" condition exists, the RF VCO's frequency will be N times that of the comparison frequency, where N is the divider ratio.

1.1 OSCILLATOR

The reference oscillator frequency for the PLL is provided by an external reference TCXO through the $\rm OSC_{IN}$ pin. $\rm OSC_{IN}$ block can operate to 40 MHz. The inputs have a $\rm V_{CC}/2$ input threshold and can be driven from an external CMOS or TTL logic gate.

1.2 REFERENCE DIVIDER (R COUNTER)

The R Counter is clocked through the oscillator block. The maximum input frequency is 40 MHz and the maximum output frequency is 10 MHz. The R Counter is a 10-bit CMOS binary counter with a divide range from 2 to 1,023. See programming description 2.2.1.

1.3 PROGRAMMABLE DIVIDER (N COUNTER)

The N counter is clocked by the small signal $f_{\rm IN}$ input. The LMX2323 RF N counter is a 15-bit integer divider. The N counter is configured as a 5-bit A Counter and a 10-bit B Counter, offering a continuous integer divide range from 992 to 32,767. The LMX2323 is capable of operating from 100 MHz to 2.0 GHz with a 32/33 prescaler.

1.3.1 Prescaler

The RF inputs to the prescaler consist of the $f_{\rm IN}$ and $f_{\rm INB}$ pins which are the complimentary inputs of a differential pair amplifier. The differential $f_{\rm IN}$ configuration can operate to 2 GHz. The input buffer drives the N counter's ECL D-type flip-flops in a dual modulus configuration. The LMX2323 has a 32/33 prescaler ratio. The prescaler clocks the subsequent CMOS flip-flop chain comprising the fully programmable A and B counters.

1.4 PHASE/FREQUENCY DETECTOR

The phase/frequency detector is driven from the N and R counter outputs. The maximum frequency at the phase detector inputs is 10 MHz. The phase detector outputs control the charge pumps. The polarity of the pump-up or pump-down control is programmed using PD_POL, depending on whether RF VCO characteristics are positive or negative (see programming description 2.2.2). The phase detector also receives a feedback signal from the charge pump, in order to eliminate dead zone.

1.5 CHARGE PUMP

The phase detector's current source output pumps charge into an external loop filter, which then converts the charge into the VCO's control voltage. The charge pumps steer the charge pump output, CP $_{\!\rm o}$, to V $_{\!\rm P}$ (pump-up) or Ground (pump-down). When locked, CP $_{\!\rm o}$ is primarily in a TRI-STATE mode with small corrections. The RF charge pump output current magnitude is set to 4.0 mA. The charge pump output can also be used to output divider signals as detailed in section 2.2.3.

1.6 MICROWIRE SERIAL INTERFACE

The programmable functions are accessed through the MICROWIRE serial interface. The interface is made of three functions: clock, data and latch enable (LE). Serial data for the various counters is clocked in from data on the rising edge of clock, into the 18-bit shift register. Data is entered MSB first. The last bit decodes the internal register address. On the rising edge of LE, data stored in the shift register is loaded into one of the two appropriate latches (selected by address bits). A complete programming description is included in the following sections.

1.7 LOCK DETECT OUTPUT

A digital filtered lock detect function is included through an internal digital filter to produce a CMOS logic output available on the LD output pin if selected. The lock detect output is high when the error between the phase detector inputs is less than 15 ns for five consecutive comparison cycles. The lock detect output is low when the error between the phase detector input is more than 30 ns for one comparison cycle. An open drain, analog lock detect status generated from the phase detector is also available on the LD output pin, if selected. The analog lock detect output goes high when the charge pump is inactive. It goes low when the charge pump is active during a comparison cycle. When the PLL is in power down mode, the LD output is always high.

1.8 POWER CONTROL

The PLL can be power controlled in two ways. The first method is by setting the CE pin LOW. This asynchronously powers down the PLL and TRI-STATEs the charge pump output, regardless of the PWDN bit status. The second method is by programming through MICROWIRE, while keeping the CE HIGH. Programming the PWDN bit in the N register HIGH (CE = HIGH) will disable the N counter and de-bias the f_{IN} input (to a high impedance state). The R counter functionality also becomes disabled. The reference oscillator block powers down when the power down bit is asserted. The ${\rm OSC_{IN}}$ pin reverts to a high impedance state when this condition exists. Power down forces the charge pump and phase comparator logic to a TRI-STATE condition. A power down counter reset function resets both N and R counters. Upon powering up the N counter resumes counting in "close" alignment with the R counter (the maximum error is one prescaler cycle). The MICROWIRE control register remains active and capable of loading and latching in data during all of the power down modes.

2.0 Programming Description

2.1 MICROWIRE INTERFACE

The MICROWIRE interface is comprised of an 18-bit shift register, a R register and a N register. The shift register consists of a 17-bit DATA field and a 1-bit address (ADDR) field as shown below. When Latch Enable transitions HIGH, data stored in the shift register is loaded into either the R or N register depending on the ADDR bit as described in Table 2.1.1. The data is loaded MSB first. The DATA field assignment for the R and N registers are shown in Table 2.1.2 below.

MSB				LSB
	DATA [16:0]		ADDR	
17		1	0	

2.1.1 Address Bit Truth Table

When LE is transitioned high, data is transferred from the 18-bit shift register into either the 14-bit R register, or the 17-bit N register depending upon the state of the ADDR bit.

ADDR	DATA Location
0	N register
1	R register

2.1.2 Register Content Truth Table

	MSB SHIFT REGISTER BIT LOCATION LS													SB	
	17	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1											0		
N Register	NB_CNTR NA_CNTR CTL_WORD											VORD	0		
R Register	Х	Х	L	D_OU	Т	PD_POL	CP_TRI	I R_CNTR							1

2.2 R REGISTER

If the Address Bit (ADDR) is 1, when LE is transitioned high data is transferred from the 18-bit shift register into the 14-bit R register. The R register contains a latch which sets the PLL 10-bit R counter divide ratio. The divide ratio is programmed using the bits R_CNTR as shown in 2.2.1 10-Bit Programmable Reference Divider Ratio (R Counter). The ratio must be \geq 2. The PD_POL and CP_TRI bits control the phase detector polarity and charge pump TRI-STATE respectively, as shown in 2.2.2 R[11], R[12] Truth Table. X denotes a don't care condition.

First	First Bit SHIFT REGISTER BIT LOCATION Last Bit												st Bit
17													0
X	Х		LD_OU	Γ	PD_POL	CP_TRI	RI R_CNTR [9:0]						1

2.2.1 10-Bit Programmable Reference Divider Ratio (R Counter)

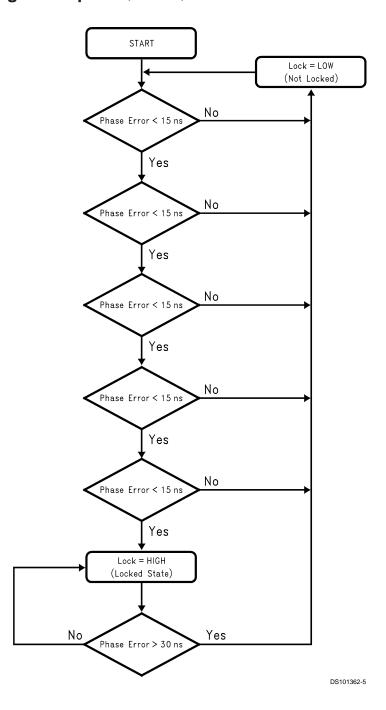
	R_CNTR												
Divide Ratio	9	8	7	6	5	4	3	2	1	0			
2	0	0	0	0	0	0	0	0	1	0			
3	0	0	0	0	0	0	0	0	1	1			
•	•	•	•	•	•	•	•	•	•	•			
1,023	1	1	1	1	1	1	1	1	1	1			

Note: Divide ratio: 2 to 1,023 (Divide ratios less than 2 are prohibited).

R_CNTR — These bits select the divide ratio of the programmable reference dividers.

2.2.2 R[11], R[12] Truth Table

Bit	Location	Function	0	1
CP_TRI	R[11]	Charge Pump TRI-STATE	Normal Operation	TRI-STATE
PD_POL	R[12]	Phase Detector Polarity	Negative	Positive


Note: Depending upon VCO characteristics, R[12] should be set accordingly. When VCO characteristics are positive, R[12] should be set HIGH. When VCO characteristics are negative, R[12] should be set LOW.

2.2.3 LD_OUT Truth Table (R[13]-[15])

LD Pin Output	R[15]	R[14]	R[13]
Digital Lock Detect	0	0	0
Analog Lock Detect	0	0	1
R Divider Output	0	1	0
N Divider Output	0	1	1
Test Mode	1	0	0

Note: Do not use Test mode in normal operation. Test mode is for factory testing purpose only. It allows direct testing of the digital lock detect by using the CLK and Data as the R and N counter outputs.

The Lock Detect Digital Filter compares the phase difference of the inputs from the phase detector to a RC generated delay of approximately 15 ns. To enter the locked state (LD = High), the phase error must be less than the 15 ns RC delay for 5 consecutive reference cycles. Once in lock, the RC delay is changed to approximately 30 ns. To exit the locked state, the phase error must be greater than the 30 ns RC delay. When the PLL is in power down mode, LD is forced to High state. A flow chart of the digital filter is shown as below:

2.3 N REGISTER

If the address bit is LOW (ADDR = 0), when LE is transitioned high, data is transferred from the 18-bit shift register into the 17-bit N register. The N register consists of the 5-bit swallow counter (A counter), the 10-bit programmable counter (B counter) and the control word. Serial data format is shown below in 2.3.1 5-Bit Swallow Counter Divide Ratio (A Counter) and 2.3.2 10-Bit Programmable Counter Divide Ratio (B Counter). The pulse swallow function which determines the divide ratio is described in section 2.3.3 Pulse Swallow Function.

	•	J	LOIDII	LK DII	LOCATION	ON					Las	t Bit				
17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NB_CNTR [9:0]								NA_	_CNTR [4	l:0]		CTL_WC	ORD [1:0]	0		

2.3.1 5-Bit Swallow Counter Divide Ratio (A Counter)

Swallow Count			NA_CNTR		
(A)	4	3	2	1	0
0	0	0	0	0	0
1	0	0	0	0	1
•	•	•	•	•	•
31	1	1	1	1	1

Notes: Swallow Counter Value: 0 to 31

 $NB_CNTR \ge NA_CNTR$

2.3.2 10-Bit Programmable Counter Divide Ratio (B Counter)

	NB_CNTR									
Divide Ratio	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•
1023	1	1	1	1	1	1	1	1	1	1

Notes: Divide ratio: 3 to 1,023 (Divide ratios less than 3 are prohibited).

 $NB_CNTR \ge NA_CNTR$

2.3.3 Pulse Swallow Function

The N divider counts such that it divides the VCO RF frequency by (P+1) A times, and then divides by P (B - A) times. The B value (NB_CNTR) must be \geq 3. The continuous divider ratio is from 992 to 32,767. Divider ratios less than 992 are achievable as long as the binary counter value is greater than the swallow counter value (NB_CNTR \geq NA_CNTR).

 $f_{VCO} = N x (f_{OSC}/R)$

 $N = (P \times B) + A$

 f_{VCO} : Output frequency of external voltage controlled oscillator (VCO)

 $f_{\mbox{\scriptsize OSC}}.$ Output frequency of the external reference frequency oscillator

R: Preset divide ratio of binary 10-bit programmable reference counter (2 to 1023)

N: Preset divide ratio of main 15-bit programmable integer N counter (992 to 32,767)

B: Preset divide ratio of binary 10-bit programmable B counter (3 to 1023)

A: Preset value of binary 5-bit swallow A counter $(0 \le A \le 31, A \le B)$

P: Preset modulus of dual modulus prescaler (P = 32)

2.3.4 CTL_WORD

MSB LSB

N2	N1		
CNT_RST	PWDN		

2.3.4.1 Reserve Word Truth Table

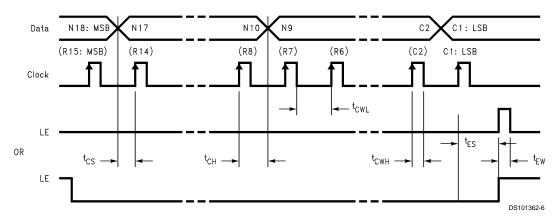
CE	CNT_RST	PWDN	Function
1	0	0	Normal Operation
1	0	1	Synchronous Powerdown
1	1	0	Counter Reset
1	1	1	Asynchronous Powerdown
0	X	X	Asynchronous Powerdown

Notes: X denotes don't care.

1. The **Counter Reset** bit when activated allows the reset of both N and R counters. Upon powering up the N counter resumes counting in "close" alignment with the R counter. (The maximum error is one prescaler cycle).

2. Both synchronous and asynchronous **power down** modes are available with the LMX2323 to be able to adapt to different types of applications. The MICROWIRE control register remains active and capable of loading and latching in data during all of the powerdown modes.

Synchronous Power down Mode

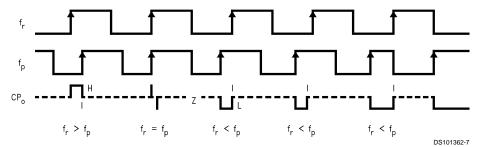

The PLL loops can be synchronously powered down by setting the counter reset mode bit to LOW (N[2] = 0) and its power down mode bit to HIGH (N[1] = 1). The power down function is gated by the charge pump. Once the power down mode and counter reset mode bits are loaded, the part will go into power down mode upon the completion of a charge pump pulse event.

Asynchronous Power down Mode

The PLL loops can be asynchronously powered down by setting the counter reset mode bit to HIGH (N[2] = 1) and its power down mode bit to HIGH (N[1] = 1). The power down function is NOT gated by the charge pump. Once the power down and counter reset mode bits are loaded, the part will go into power down mode immediately.

The R and N counters are disabled and held at load point during the synchronous and asynchronous power down modes. This will allow a smooth acquisition of the RF signal when the PLL is programmed to power up. Upon powering up, both R and N counters will start at the 'zero' state, and the relationship between R and N will not be random.

Serial Data Input Timing


Notes: Parenthesis data indicates programmable reference divider data.

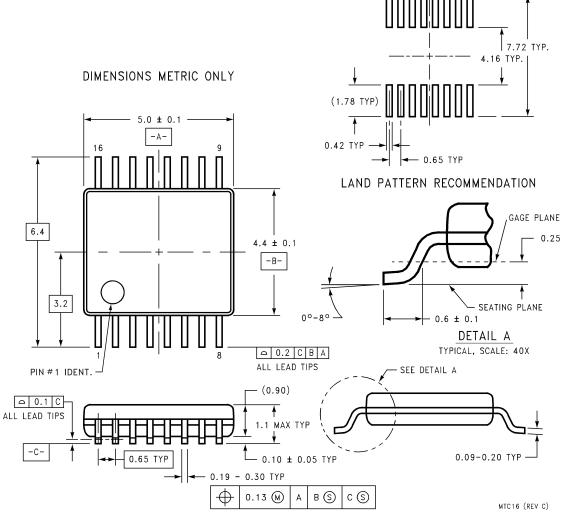
Data shifted into register on clock rising edge.

Data is shifted in MSB first.

Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around $V_{CC}/2$. The test waveform has an edge rate of 0.6 V/ns with amplitudes of 2.2V @ V_{CC} = 2.7V and 2.6V @ V_{CC} = 5.5V.

Phase Comparator and Internal Charge Pump Characteristics

Notes: Phase difference detection range: -2π to $+2\pi$


The minimum width pump up and pump down current pulses occur at the CPo pin when the loop is locked. PD_POL = 1

f_r: Phase comparator input from the R divider

 f_p : Phase comparator input from the N divider

CPo: Charge pump output

Physical Dimensions inches (millimeters) unless otherwise noted

16-Pin Thin Shrink Small Outline Package Order Number LMX2323TM, LMX2323TMX NS Package Number MTC16

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

Email: ap.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507