www.ti.com

SNVS095C -MAY 2004-REVISED MARCH 2005

LP2952/LP2952A/LP2953/LP2953A Adjustable Micropower Low-Dropout Voltage Regulators

Check for Samples: LP2952-N, LP2952A, LP2953, LP2953A

FEATURES

- Output voltage adjusts from 1.23V to 29V
- Guaranteed 250 mA output current
- Extremely low quiescent current
- Low dropout voltage
- · Extremely tight line and load regulation
- Very low temperature coefficient
- Current and thermal limiting
- Reverse battery protection

• 50 mA (typical) output pulldown crowbar

• 5V and 3.3V versions available

LP2953 VERSIONS ONLY

 Auxiliary comparator included with CMOS/TTL compatible output levels. Can be used for fault detection, low input line detection, etc.

DESCRIPTION

The LP2952 and LP2953 are micropower voltage regulators with very low quiescent current (130 µA typical at 1 mA load) and very low dropout voltage (typ. 60 mV at light load and 470 mV at 250 mA load current). They are ideally suited for battery-powered systems. Furthermore, the quiescent current increases only slightly at dropout, which prolongs battery life.

The LP2952 and LP2953 retain all the desirable characteristics of the LP2951, but offer increased output current, additional features, and an improved shutdown function.

The internal crowbar pulls the output down quickly when the shutdown is activated.

The error flag goes low if the output voltage drops out of regulation.

Reverse battery protection is provided.

The internal voltage reference is made available for external use, providing a low-T.C. reference with very good line and load regulation.

The parts are available in DIP and surface mount packages.

APPLICATIONS

- · High-efficiency linear regulator
- Regulator with under-voltage shutdown
- Low dropout battery-powered regulator
- Snap-ON/Snap-OFF regulator

₩.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Block Diagram

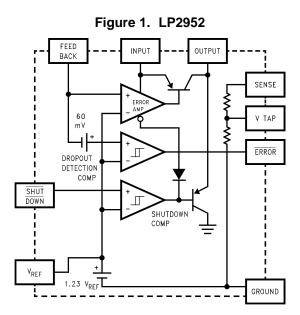
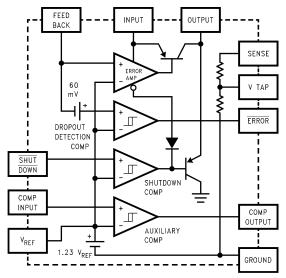



Figure 2. LP2953

Pinout Drawings

Figure 3. LP2952 14-Pin

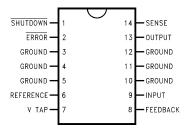


Figure 4. LP2953 16-Pin

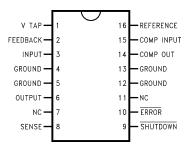


Figure 5. LP2952 16-Pin

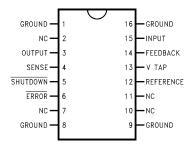
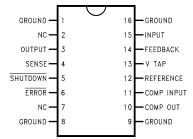



Figure 6. LP2953 16-Pin

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

Absolute Maximum Natings	
Storage Temperature Range	-65°C ≤ T _A ≤ +150°C
Operating Temperature Range LP2952I, LP2953I, LP2952AI, LP2953AI, LP2952I-3.3, LP2953I-3.3, LP2952AI-3.3, LP2953AI-3.3	-40°C ≤ T ₁ ≤ +125°C
LP2953AM	-55°C ≤ T _A ≤ +125°C
Lead Temp. (Soldering, 5 seconds)	260°C
Power Dissipation (2)	Internally Limited
Maximum Junction Temperature LP2952I, LP2953I, LP2952AI, LP2953AI, LP2952I-3.3, LP2953I-3.3, LP2952AI-3.3, LP2953AI-3.3	+125°C
LP2953AM	+150°C
Input Supply Voltage	-20V to +30V
Feedback Input Voltage (3)	-0.3V to +5V
Comparator Input Voltage (4)	-0.3V to +30V
Shutdown Input Voltage (4)	-0.3V to +30V
Comparator Output Voltage (4)	-0.3V to +30V
ESD Rating ⁽⁵⁾	2 kV

- (1) Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.
- (2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J(MAX), the junction-to-ambient thermal resistance, θ_{J-A}, and the ambient temperature, T_A. The maximum allowable power dissipation at any ambient temperature is calculated using the equation for P(MAX), P(MAX) = T_J(MAX) T_A/θ_{J-A}. Exceeding the maximum allowable power dissipation will cause excessive die
 - using the equation for P(MAX), $P(MAX) = \frac{P(MAX)}{\theta_{J-A}}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. See APPLICATION HINTS for additional information on heatsinking and thermal resistance.
- (3) When used in dual-supply systems where the regulator load is returned to a negative supply, the output voltage must be diode-clamped to ground.
- (4) May exceed the input supply voltage.
- (5) Human body model, 200 pF discharged through 1.5 k Ω .

Electrical Characteristics

Limits in standard typeface are for T_J = 25°C, **bold typeface** applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $V_{IN} = V_O(NOM) + 1V$, $I_L = 1$ mA, $C_L = 2.2$ µF for 5V parts and 4.7µF for 3.3V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin.

3.3V Versions

Symbol	Parameter	Conditions	Typical	LP2952AI-3.3,	LP2953AI-3.3	LP2952I-3.3	Units	
				Min	Max	Min	Max	
Vo	Output Voltage		3.3	3.284	3.317	3.267	3.333	V
				3.260	3.340	3.234	3.366	
		1 mA ≤ I _L ≤ 250 mA	3.3	3.254	3.346	3.221	3.379	

5V Versions

Symbol	Parameter	Conditions	Typical	LP2952AI,	LP2953AI.	LP2952I.	LP2953I	Units	
				LP2953		,			
				Min	Max	Min	Max		
Vo	Output Voltage		5.0	4.975	5.025	4.950	5.050	V	
				4.940	5.060	4.900	5.100		
		1 mA ≤ I _L ≤ 250 mA	5.0	4.930	5.070	4.880	5.120		

⁽¹⁾ A military RETS specification is available upon request. For more information on military products, please refer to the Mil-Aero web page at http://www.national.com/appinfo/milaero/index.html.

All Voltage Options Electrical Characteristics

Limits in standard typeface are for T_J = 25°C, **bold typeface** applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $V_{IN} = V_O(NOM) + 1V$, I_L = 1 mA, C_L = 2.2 μ F for 5V parts and 4.7 μ F for 3.3V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin.

Symbol	Parameter	Conditions	Typical	LP295 LP295 LP29	LP2953AI, 2AI-3.3, 3AI-3.3, 53AM	LP29	, LP2953I, 52I-3.3, 53I-3.3	Units
				Min	Max	Min	Max	
REGULA	TOR							
Δν _ο ΔΤ (1	COEIIICIEIIL	(3)	20		100		150	ppm/°C
ΔV _O	Output Voltage Line	$V_{IN} = V_O(NOM) + 1V \text{ to } 30V$	0.03		0.1		0.2	%
(2)	Regulation				0.2		0.4	
$\frac{\Delta V_{O}}{V_{O}}$	Output Voltage Load	I _L = 1 mA to 250 mA	0.04		0.16		0.20	%
(3)	Regulation (4)	$I_L = 0.1 \text{ mA to 1 mA}$			0.20		0.30	
V _{IN} –V _O	Dropout Voltage	I _L = 1 mA	60		100		100	mV
	(5)				150		150	
		I _L = 50 mA	240		300		300	
					420		420	
		I _L = 100 mA	310		400		400	
					520		520	
		$I_L = 250 \text{ mA}$	470		600		600	
					800		800	
I_{GND}	Ground Pin Current (6)	$I_L = 1 \text{ mA}$	130		170		170	μΑ
					200		200	
		$I_L = 50 \text{ mA}$	1.1		2		2	mA
					2.5		2.5	
		$I_L = 100 \text{ mA}$	4.5		6		6	
					8		8	
		$I_L = 250 \text{ mA}$	21		28		28	
					33		33	
I_{GND}	Ground Pin Current at Dropout	$V_{IN} = V_O(NOM) - 0.5V$	165		210		210	μA
	•	I _L = 100 μA			240		240	
I _{GND}	Ground Pin Current at Shutdown (6)	V _{SHUTDOWN} ≤ 1.1V	105		140		140	μA
I _{LIMIT}	Current Limit	V _{OUT} = 0	380		500		500	mA
					530		530	

⁽¹⁾ Drive Shutdown pin with TTL or CMOS-low level to shut regulator OFF, high level to turn regulator ON.

⁽²⁾ A military RETS specification is available upon request. For more information on military products, please refer to the Mil-Aero web page at http://www.national.com/appinfo/milaero/index.html.

⁽³⁾ Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

⁽⁴⁾ Load regulation is measured at constant junction temperature using low duty cycle pulse testing. Two separate tests are performed, one for the range of 100 μA to 1 mA and one for the 1 mA to 250 mA range. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

⁽⁵⁾ Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1V differential. At very low values of programmed output voltage, the input voltage minimum of 2V (2.3V over temperature) must be observed.

⁽⁶⁾ Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current, output load current, and current through the external resistive divider (if used).

All Voltage Options Electrical Characteristics (continued)

Limits in standard typeface are for $T_J = 25^{\circ}\text{C}$, **bold typeface** applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $V_{IN} = V_O(\text{NOM}) + 1\text{V}$, $I_L = 1$ mA, $C_L = 2.2~\mu\text{F}$ for 5V parts and 4.7 μF for 3.3V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin.

		Conditions	Typical	LP295 LP295 LP29	, LP2953AI, 2AI-3.3, 3AI-3.3, 953AM) (2)	LP2952I, LP295 LP295	Units		
				Min	Max	Min	Max		
ΔV _O ΔPd (4	Thermal Regulation	(7)	0.05		0.2		0.2	%/W	
e _n	Output Noise Voltage (10	$C_L = 4.7 \ \mu F$	400					μV	
	Hz to 100 kHz) I _L = 100 mA	C _L = 33 μF	260					RMS	
	IL = 100 IIIA	C _L = 33 µF ⁽⁸⁾	80					1	
V _{REF}	Reference Voltage	(9)	1.230	1.215	1.245	1.205	1.255	V	
				1.205	1.255	1.190	1.270	1	
ΔV _{REF} V _{REF}	Reference Voltage Line	$V_{IN} = 2.5V$ to $V_O(NOM) + 1V$	0.03		0.1		0.2	%	
(5)	Regulation	$V_{IN} = V_O(NOM) + 1V \text{ to } 30V^{(10)}$			0.2		0.4		
$\frac{\Delta V_{REF}}{V_{REF}}$	Reference Voltage Load	I _{REF} = 0 to 200 μA	0.25		0.4		0.8	%	
(6)	Regulation				0.6		1.0		
ΔV _{REF} (7	Reference Voltage Temp. Coefficient	(3)	20					ppm/°C	
I _B (FB)	Feedback Pin Bias		20		40		40	nA	
D()	Current				60		60	1	
I _O (SINK)	Output "OFF" Pulldown	(11)		30		30		mA	
	Current			20		20			
DROPOU"	T DETECTION COMPARAT	TOR							
I _{OH}	Output "HIGH" Leakage	V _{OH} = 30V	0.01		1		1	μA	
					2		2		
V _{OL}	Output "LOW" Voltage	$V_{IN} = V_O(NOM) - 0.5V$	150		250		250	mV	
		$I_O(COMP) = 400 \mu A$			400		400		
V_{THR}	Upper Threshold Voltage	(12)	-60	-80	-35	-80	-35	mV	
(MAX)				-95	-25	-95	-25]	
V_{THR}	Lower Threshold Voltage	(12)	-85	-110	-55	-110	-55	mV	
(MIN)				-160	-40	-160	-40	1	
HYST	Hysteresis	(12)	15					mV	
SHUTDOV	WN INPUT ⁽¹³⁾								
Vos	Input Offset	(Referred to V _{REF})	±3	- 7.5	7.5	- 7.5	7.5	mV	

⁽⁷⁾ Thermal regulation is the change in output voltage at a time T after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 200 mA load pulse at V_{IN} = V_O(NOM)+15V (3W pulse) for T = 10 ms.

⁽⁸⁾ Connect a 0.1 µF capacitor from the output to the feedback pin.

⁽⁹⁾ $V_{REF} \le V_{OUT} \le (V_{IN} - 1V)$, $2.3V \le V_{IN} \le 30V$, $100 \ \mu A \le I_L \le 250 \ mA$.

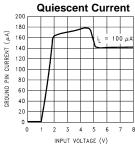
⁽¹⁰⁾ Two separate tests are performed, one covering $2.5V \le V_{IN} \le V_O(NOM) + 1V$ and the other test for $V_O(NOM) + 1V \le V_{IN} \le 30V$.

⁽¹¹⁾ $V_{SHUTDOWN} \le 1.1V$, $V_{OUT} = V_{O}(NOM)$.

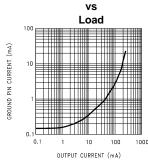
⁽¹²⁾ Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the nominal reference voltage measured atV_{IN} = V_O(NOM) + 1V. To express these thresholds in terms of output voltage change, multiply by the Error amplifier gain, which is V_{OUT}/V_{REF} = (R1 + R2)/R2(refer to Figure 10).

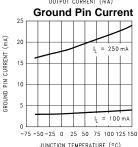
⁽¹³⁾ Human body model, 200 pF discharged through 1.5 k Ω .

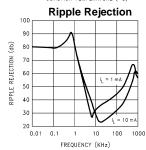
All Voltage Options Electrical Characteristics (continued)

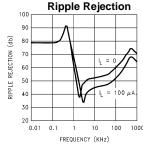

Limits in standard typeface are for T_J = 25°C, **bold typeface** applies over the full operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $V_{IN} = V_O(NOM) + 1V$, I_L = 1 mA, C_L = 2.2 μ F for 5V parts and 4.7 μ F for 3.3V parts. Feedback pin is tied to V Tap pin, Output pin is tied to Output Sense pin.

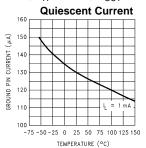
Symbol	Parameter	Conditio	ns	Typical	LP295 LP295 LP29	, LP2953AI, 2AI-3.3, 3AI-3.3, 153AM	LP2952I LP299 LP299	Units	
					Min	Max	Min	Max	
	Voltage				-10	10	-10	10	
HYST	Hysteresis			6					mV
I _B	Input Bias	$V_{IN}(S/D) = 0V \text{ to } 5V$		10	-30	30	-30	-30	nA
	Current				-50	50	-50	50	
			LP2953AM	10	-30	30			
					-75	75			
AUXILIAI	RY COMPARATOR (LP295	3 Only)							
Vos	Input Offset Voltage	(Referred to V _{REF})	(Referred to V _{REF})		- 7.5	7.5	- 7.5	7.5	mV
					-10	10	-10	10	
			LP2953AM	±3	-7.5	7.5			
					-12	12			
HYST	Hysteresis			6					mV
I _B	Input Bias Current	$V_{IN}(COMP) = 0V to$	5V	10	-30	30	-30	30	nA
					-50	50	-50	50	
			LP2953AM	10	-30	30			
					-75	75			
I _{OH}	Output "HIGH" Leakage	V _{OH} = 30V		0.01		1		1	μΑ
		$V_{IN}(COMP) = 1.3V$				2		2	
			LP2953AM	0.01		1			
						2.2			
V _{OL}	Output "LOW" Voltage	$V_{IN}(COMP) = 1.1V$	I .	150		250		250	mV
-		I _O (COMP) = 400 μA		1		400		400	
			LP2953AM	150		250		Ī	
						420		†	

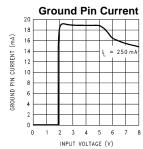


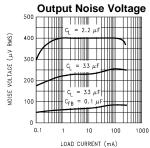

Typical Performance Characteristics

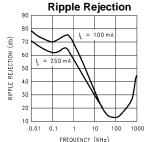

Unless otherwise specified: V_{IN} = 6V, I_L = 1 mA, C_L = 2.2 μ F, V_{SD} = 3V, T_A = 25°C, V_{OUT} = 5V.

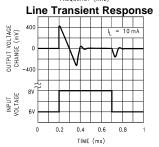


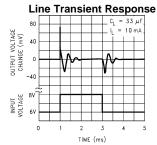

Ground Pin Current

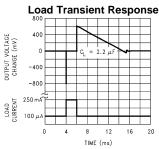


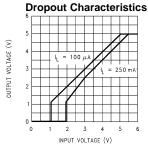


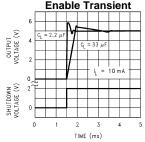


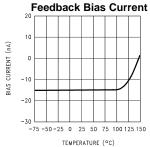


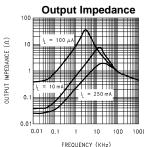


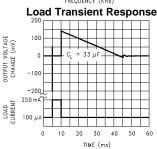


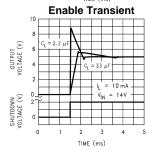


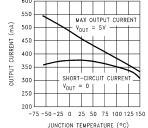

Typical Performance Characteristics (continued)

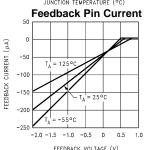

Unless otherwise specified: V_{IN} = 6V, I_L = 1 mA, C_L = 2.2 μF , V_{SD} = 3V, T_A = 25°C, V_{OUT} = 5V.



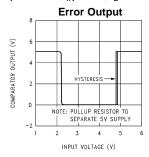


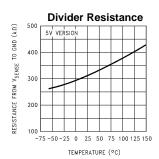


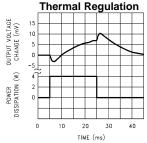


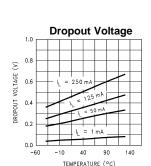


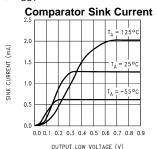
Short-Circuit Output Current and Maximum Output Current

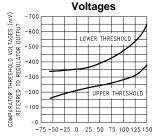


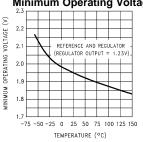




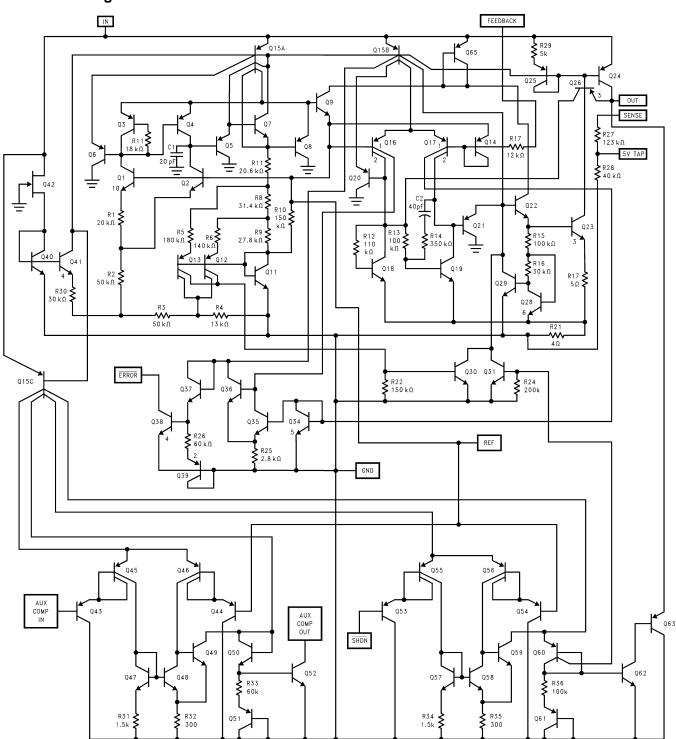

Typical Performance Characteristics (continued)


Unless otherwise specified: V_{IN} = 6V, I_L = 1 mA, C_L = 2.2 μF , V_{SD} = 3V, T_A = 25°C, V_{OUT} = 5V.





Dropout Detection Comparator Threshold


TEMPERATURE (°C)

Minimum Operating Voltage

Schematic Diagram

Application Hints

HEATSINK REQUIREMENTS (Industrial Temperature Range Devices)

The maximum allowable power dissipation for the LP2952/LP2953 is limited by the maximum junction temperature (+125°C) and the external factors that determine how quickly heat flows away from the part: the ambient temperature and the junction-to-ambient thermal resistance for the specific application.

The industrial temperature range ($-40^{\circ}\text{C} \le T_{\text{J}} \le +125^{\circ}\text{C}$) parts are manufactured in plastic DIP and surface mount packages which contain a copper lead frame that allows heat to be effectively conducted away from the die, through the ground pins of the IC, and into the copper of the PC board. Details on heatsinking using PC board copper are covered later.

To determine if a heatsink is required, the maximum power dissipated by the regulator, P(max), must be calculated. It is important to remember that if the regulator is powered from a transformer connected to the AC line, the **maximum specified AC input voltage** must be used (since this produces the maximum DC input voltage to the regulator). Figure 7 shows the voltages and currents which are present in the circuit. The formula for calculating the power dissipated in the regulator is also shown in Figure 7:

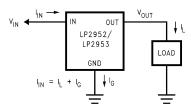


Figure 7. $P_{TOTAL} = (V_{IN} - V_{OUT}) I_L + (V_{IN}) I_G$ Current/Voltage Diagram

The next parameter which must be calculated is the maximum allowable temperature rise, $T_R(max)$. This is calculated by using the formula:

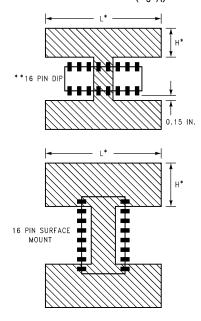
$$T_{R}(max) = T_{J}(max) - T_{R}(max)\theta_{(J-A)} = T_{R}(max)/P(max)$$
(8)

where: T_J(max) is the maximum allowable junction temperature

T_A(max) is the maximum ambient temperature

Using the calculated values for $T_R(max)$ and P(max), the required value for junction-to-ambient thermal resistance, $\theta_{(J-A)}$, can now be found:

The heatsink is made using the PC board copper. The heat is conducted from the die, through the lead frame (inside the part), and out the pins which are soldered to the PC board. The pins used for heat conduction are given in Table 1.


Table 1. Heat Conducting Pins

Part	Package	Pins
LP2952IN, LP2952AIN,	14-Pin DIP	3, 4, 5,
LP2952IN-3.3, LP2952AIN-3.3		10, 11, 12
LP2953IN, LP2953AIN,	16-Pin DIP	4, 5, 12, 13
LP2953IN-3.3, LP2953AIN-3.3		
LP2952IM, LP2952AIM,	16-Pin Surface	1, 8, 9, 16
LP2952IM-3.3, LP2952AIM-3.3,	Mount	
LP2953IM, LP2953AIM,		
LP2953IM-3.3, LP2953AIM-3.3		

Submit Documentation Feedback

Figure 8 shows copper patterns which may be used to dissipate heat from the LP2952 and LP2953. Table 2 shows some values of junction-to-ambient thermal resistance (θ_{L-A}) for values of L and W for 1 oz. copper.

^{*} For best results, use L = 2H

Figure 8. Copper Heatsink Patterns

Table 2. Thermal Resistance for Various Copper Heatsink Patterns

Package	L (in.)	H (in.)	θ _{J-A} (°C/W)
16-Pin DIP	1	0.5	70
	2	1	60
	3	1.5	58
	4	0.19	66
	6	0.19	66
14-Pin DIP	1	0.5	65
	2	1	51
	3	1.5	49
Surface Mount	1	0.5	83
	2	1	70
	3	1.5	67
	6	0.19	69
	4	0.19	71
	2	0.19	73

HEATSINK REQUIREMENTS (Military Temperature Range Devices)

The maximum allowable power dissipation for the LP2953AMJ is limited by the maximum junction temperature (+150°C) and the two parameters that determine how quickly heat flows away from the die: the ambient temperature and the junction-to-ambient thermal resistance of the part.

The military temperature range ($-55^{\circ}C \le T_{J} \le +150^{\circ}C$) parts are manufactured in ceramic DIP packages which contain a KOVAR lead frame (unlike the industrial parts, which have a copper lead frame). The KOVAR material is necessary to attain the hermetic seal required in military applications.

^{** 14-}Pin DIP is similar, refer to Table 1 for pins designated for heatsinking.

www.ti.com

The KOVAR lead frame does not conduct heat as well as copper, which means that the PC board copper can not be used to significantly reduce the overall junction-to-ambient thermal resistance in applications using the LP2953AMJ part.

The power dissipation calculations for military applications are done exactly the same as was detailed in the previous section, with one important exception: the value for $\theta_{(J-A)}$, the junction-to-ambient thermal resistance, is fixed at 95°C/W and can not be changed by adding copper foil patterns to the PC board. This leads to an important fact: The maximum allowable power dissipation in any application using the LP2953AMJ is dependent only on the ambient temperature:

$$P(max) = T_{R(max)} / \theta_{(J-A)}$$

$$P(max) = \frac{T_{J(max)} - T_{A(max)}}{\theta_{(J-A)}}$$

$$P(max) = \frac{150 - T_{A(max)}}{95}$$
(9)

Figure 9 shows a graph of maximum allowable power dissipation vs. ambient temperature for the LP2953AMJ, made using the 95°C/W value for $\theta_{(J-A)}$ and assuming a maximum junction temperature of 150°C (caution: the *maximum* ambient temperature which will be reached in a given application must always be used to calculate maximum allowable power dissipation).

EXTERNAL CAPACITORS

A 2.2 μ F (or greater) capacitor is required between the output pin and ground to assure stability when the output is set to 5V. Without this capacitor, the part will oscillate. Most type of tantalum or aluminum electrolytics will work here. Film types will work, but are more expensive. Many aluminum electrolytics contain electrolytes which freeze at -30° C, which requires the use of solid tantalums below -25° C. The important parameters of the capacitor are an ESR of about 5Ω or less and a resonant frequency above 500 kHz (the ESR may increase by a factor of 20 or 30 as the temperature is reduced from 25° C to -30° C). The value of this capacitor may be increased without limit.

At lower values of output current, less output capacitance is required for stability. The capacitor can be reduced to 0.68 μ F for currents below 10 mA or 0.22 μ F for currents below 1 mA.

Programming the output for voltages below 5V runs the error amplifier at lower gains requiring *more* output capacitance for stability. At 3.3V output, a minimum of 4.7 μ F is required. For the worst-case condition of 1.23V output and 250 mA of load current, a 6.8 μ F (or larger) capacitor should be used.

A 1 μ F capacitor should be placed from the input pin to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery input is used.

Stray capacitance to the Feedback terminal can cause instability. This problem is most likely to appear when using high value external resistors to set the output voltage. Adding a 100 pF capacitor between the Output and Feedback pins and increasing the output capacitance to 6.8 µF (or greater) will cure the problem.

MINIMUM LOAD

When setting the output voltage using an external resistive divider, a minimum current of 1 µA is recommended through the resistors to provide a minimum load.

It should be noted that a minimum load current is specified in several of the electrical characteristic test conditions, so this value must be used to obtain correlation on these tested limits.

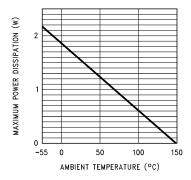
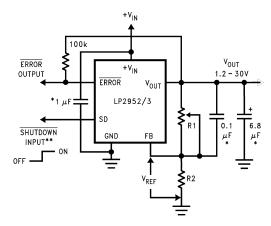


Figure 9. Power Derating Curve for LP2953AMJ


PROGRAMMING THE OUTPUT VOLTAGE

The regulator may be pin-strapped for 5V operation using its internal resistive divider by tying the Output and Sense pins together and also tying the Feedback and 5V Tap pins together.

Alternatively, it may be programmed for any voltage between the 1.23V reference and the 30V maximum rating using an external pair of resistors (see Figure 10). The complete equation for the output voltage is:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right) + (I_{FB} \times R1)$$
(10)

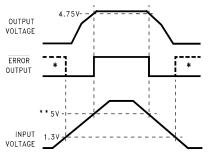
where V_{REF} is the 1.23V reference and I_{FB} is the Feedback pin bias current (-20 nA typical). The minimum recommended load current of 1 μ A sets an upper limit of 1.2 $M\Omega$ on the value of R2 in cases where the regulator must work with no load (see **MINIMUM LOAD**). I_{FB} will produce a typical 2% error in V_{OUT} which can be eliminated at room temperature by trimming R1. For better accuracy, choosing R2 = 100 $k\Omega$ will reduce this error to 0.17% while increasing the resistor program current to 12 μ A. Since the typical quiescent current is 120 μ A, this added current is negligible.

- * See Application Hints
- ** Drive with TTL-low to shut down

Figure 10. Adjustable Regulator

DROPOUT VOLTAGE

The dropout voltage of the regulator is defined as the minimum input-to-output voltage differential required for the output voltage to stay within 100 mV of the output voltage measured with a 1V differential. The dropout voltage is independent of the programmed output voltage.


DROPOUT DETECTION COMPARATOR

This comparator produces a logic "LOW" whenever the output falls out of regulation by more than about 5%. This figure results from the comparator's built-in offset of 60 mV divided by the 1.23V reference (refer to block diagrams on page 1). The 5% low trip level remains constant regardless of the programmed output voltage. An out-of-regulation condition can result from low input voltage, current limiting, or thermal limiting.

Figure 11 gives a timing diagram showing the relationship between the output voltage, the ERROR output, and input voltage as the input voltage is ramped up and down to a regulator programmed for 5V output. The ERROR signal becomes low at about 1.3V input. It goes high at about 5V input, where the output equals 4.75V. Since the dropout voltage is load dependent, the **input** voltage trip points will vary with load current. The **output** voltage trip point does not vary.

The comparator has an open-collector output which requires an external pull-up resistor. This resistor may be connected to the regulator output or some other supply voltage. Using the regulator output prevents an invalid "HIGH" on the comparator output which occurs if it is pulled up to an external voltage while the regulator input voltage is reduced below 1.3V. In selecting a value for the pull-up resistor, note that while the output can sink 400 μ A, this current adds to battery drain. Suggested values range from 100 k Ω to 1 M Ω . This resistor is not required if the output is unused.

When $V_{IN} \le 1.3V$, the error flag pin becomes a high impedance, allowing the error flag voltage to rise to its pull-up voltage. Using V_{OUT} as the pull-up voltage (rather than an external 5V source) will keep the error flag voltage below 1.2V (typical) in this condition. The user may wish to divide down the error flag voltage using equal-value resistors (10 k Ω suggested) to ensure a low-level logic signal during any fault condition, while still allowing a valid high logic level during normal operation.

^{*} In shutdown mode, ERROR will go high if it has been pulled up to an external supply. To avoid this invalid response, pull up to regulator output.

Figure 11. ERROR Output Timing

OUTPUT ISOLATION

The regulator output can be left connected to an active voltage source (such as a battery) with the regulator input power shut off, as long as the regulator ground pin is connected to ground. If the ground pin is left floating, damage to the regulator can occur if the output is pulled up by an external voltage source.

REDUCING OUTPUT NOISE

In reference applications it may be advantageous to reduce the AC noise present on the output. One method is to reduce regulator bandwidth by increasing output capacitance. This is relatively inefficient, since large increases in capacitance are required to get significant improvement.

Noise can be reduced more effectively by a bypass capacitor placed across R1 (refer to Figure 10). The formula for selecting the capacitor to be used is:

$$C_{\mathsf{B}} = \frac{1}{2\pi\,\mathsf{R1}\times20\,\mathsf{Hz}}\tag{11}$$

This gives a value of about 0.1 μ F. When this is used, the output capacitor must be 6.8 μ F (or greater) to maintain stability. The 0.1 μ F capacitor reduces the high frequency gain of the circuit to unity, lowering the output noise from 260 μ V to 80 μ V using a 10 Hz to 100 kHz bandwidth. Also, noise is no longer proportional to the output voltage, so improvements are more pronounced at high output voltages.

^{**} Exact value depends on dropout voltage. (See Application Hints)

AUXILIARY COMPARATOR

(LP2953 only)

The LP2953 contains an auxiliary comparator whose inverting input is connected to the 1.23V reference. The auxiliary comparator has an open-collector output whose electrical characteristics are similar to the dropout detection comparator. The non-inverting input and output are brought out for external connections.

SHUTDOWN INPUT

A logic-level signal will shut off the regulator output when a "LOW" (<1.2V) is applied to the Shutdown input.

To prevent possible mis-operation, the $\overline{\text{Shutdown}}$ input must be actively terminated. If the input is driven from open-collector logic, a pull-up resistor (20 k Ω to 100 k Ω recommended) should be connected from the $\overline{\text{Shutdown}}$ input to the regulator input.

If the Shutdown input is driven from a source that actively pulls high and low (like an op-amp), the pull-up resistor is not required, but may be used.

If the shutdown function is not to be used, the cost of the pull-up resistor can be saved by simply tying the Shutdown input directly to the regulator input.

IMPORTANT: Since the Absolute Maximum Ratings state that the Shutdown input can not go more than 0.3V below ground, the reverse-battery protection feature which protects the regulator input is sacrificed if the Shutdown input is tied directly to the regulator input.

If reverse-battery protection is required in an application, the pull-up resistor between the Shutdown input and the regulator input must be used.

Typical Applications

Figure 12. Basic 5V Regulator

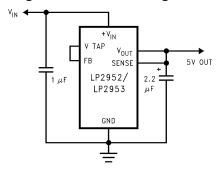
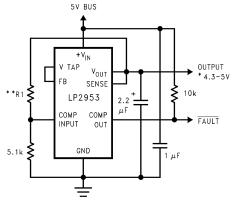



Figure 13. 5V Current Limiter with Load Fault Indicator

^{*} Output voltage equals +V_{IN} minum dropout voltage, which varies with output current. Current limits at a maximum of 380 mA (typical).

^{**} Select R1 so that the comparator input voltage is 1.23V at the output voltage which corresponds to the desired fault current value.

Figure 14. Low T.C. Current Sink

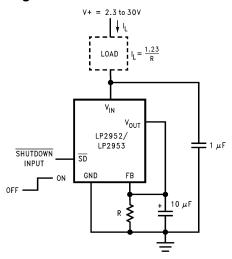
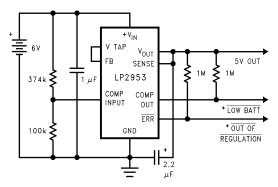
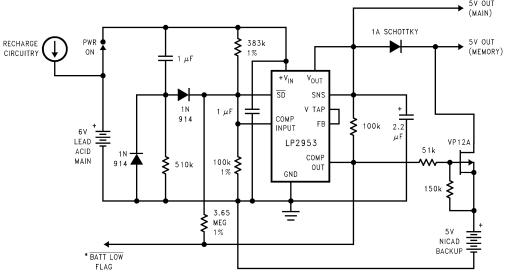



Figure 15. 5V Regulator with Error Flags for LOW BATTERY and OUT OF REGULATION



^{*} Connect to Logic or µP control inputs.

LOW BATT flag warns the user that the battery has discharged down to about 5.8V, giving the user time to recharge the battery or power down some hardware with high power requirements. The output is still in regulation at this time. OUT OF REGULATION flag indicates when the battery is almost completely discharged, and can be used to initiate a power-down sequence.

Figure 16. 5V Battery Powered Supply with Backup and Low Battery Flag

The circuit switches to the NI-CAD backup battery when the main battery voltage drops below about 5.6V, and returns to the main battery when its voltage is recharged to about 6V.

The 5V MAIN output powers circuitry which requires no backup, and the 5V MEMORY output powers critical circuitry which can not be allowed to lose power.

Figure 17. 5V Regulator with Timed Power-On Reset

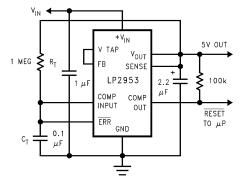
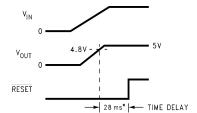
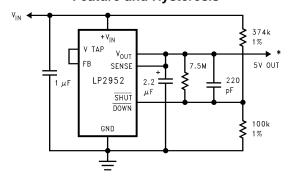



Figure 18. Timing Diagram for Timed Power-On Reset



^{*} $R_T = 1$ MEG, $C_T = 0.1 \mu F$

^{*} The BATTERY LOW flag goes low whenever the circuit switches to the NI-CAD backup battery.

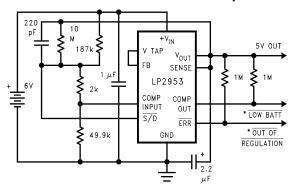
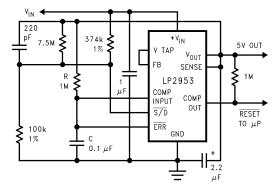


Figure 19. 5V Regulator with Snap-On/Snap-Off Feature and Hysteresis

* Turns ON at $V_{IN} = 5.87V$ Turns OFF at $V_{IN} = 5.64V$ (for component values shown)

Figure 20. 5V Regulator with Error Flags for LOW BATTERY and OUT OF REGULATION with SNAP-ON/SNAP-OFF Output



^{*} Connect to Logic or µP control inputs.

OUTPUT has SNAP-ON/SNAP-OFF feature.

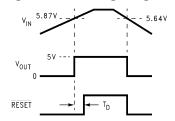

LOW BATT flag warns the user that the battery has discharged down to about 5.8V, giving the user time to recharge the battery or shut down hardware with high power requirements. The output is still in regulation at this time. OUT OF REGULATION flag goes low if the output goes below about 4.7V, which could occur from a load fault. OUTPUT has SNAP-ON/SNAP-OFF feature. Regulator snaps ON at about 5.7V input, and OFF at about 5.6V.

Figure 21. 5V Regulator with Timed Power-On Reset, Snap-On/Snap-Off Feature and Hysteresis

Figure 22. Timing Diagram

Td = (0.28) RC = 28 ms for components shown.

9-Mar-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
LP2952AIM	ACTIVE	SOIC	D	16	48	TBD	Call TI	Call TI	-40 to 125	LP2952AIM	Samples
LP2952AIM-3.3	ACTIVE	SOIC	D	16	48	TBD	Call TI	Call TI	-40 to 125	LP2952AIM -3.3	Samples
LP2952AIM-3.3/NOPB	ACTIVE	SOIC	D	16	48	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2952AIM -3.3	Samples
LP2952AIM/NOPB	ACTIVE	SOIC	D	16	48	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2952AIM	Sample
LP2952AIMX	ACTIVE	SOIC	D	16	2500	TBD	Call TI	Call TI	-40 to 125	LP2952AIM	Samples
LP2952AIMX/NOPB	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2952AIM	Samples
LP2952IM	ACTIVE	SOIC	D	16	48	TBD	Call TI	Call TI	-40 to 125	LP2952IM	Samples
LP2952IM/NOPB	ACTIVE	SOIC	D	16	48	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2952IM	Sample
LP2952IMX	ACTIVE	SOIC	D	16	2500	TBD	Call TI	Call TI	-40 to 125	LP2952IM	Sample
LP2952IMX-3.3	ACTIVE	SOIC	D	16	2500	TBD	Call TI	Call TI	-40 to 125	LP2952IM -3.3	Sample
LP2952IMX-3.3/NOPB	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2952IM -3.3	Sample
LP2952IMX/NOPB	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2952IM	Sample
LP2953AIM/NOPB	ACTIVE	SOIC	D	16	48	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2953AIM	Sample
LP2953AIMX	ACTIVE	SOIC	D	16	2500	TBD	Call TI	Call TI	-40 to 125	LP2953AIM	Sample
LP2953AIMX/NOPB	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2953AIM	Sample
LP2953IM	ACTIVE	SOIC	D	16	48	TBD	Call TI	Call TI	-40 to 125	LP2953IM	Sample
LP2953IM/NOPB	ACTIVE	SOIC	D	16	48	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2953IM	Sample
LP2953IMX	ACTIVE	SOIC	D	16	2500	TBD	Call TI	Call TI	-40 to 125	LP2953IM	Sample

PACKAGE OPTION ADDENDUM

9-Mar-2013

Orderable Device	Status	Package Type	-		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
LP2953IMX/NOPB	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LP2953IM	Samples
LP2953IN	ACTIVE	PDIP	NBG	16	20	TBD	Call TI	Call TI	-40 to 125	LP2953IN	Samples
LP2953IN/NOPB	ACTIVE	PDIP	NBG	16	20	Green (RoHS & no Sb/Br)	SN	Level-1-NA-UNLIM	-40 to 125	LP2953IN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

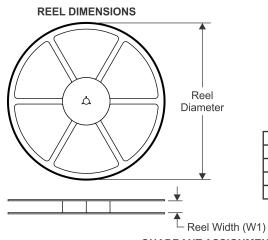
TBD: The Pb-Free/Green conversion plan has not been defined.

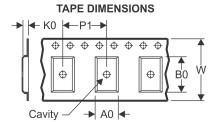
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

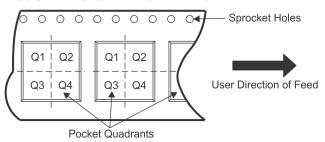
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

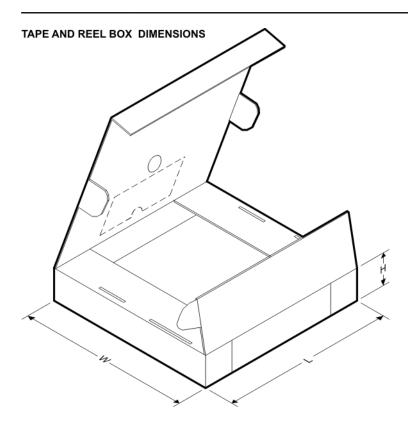

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

PACKAGE MATERIALS INFORMATION

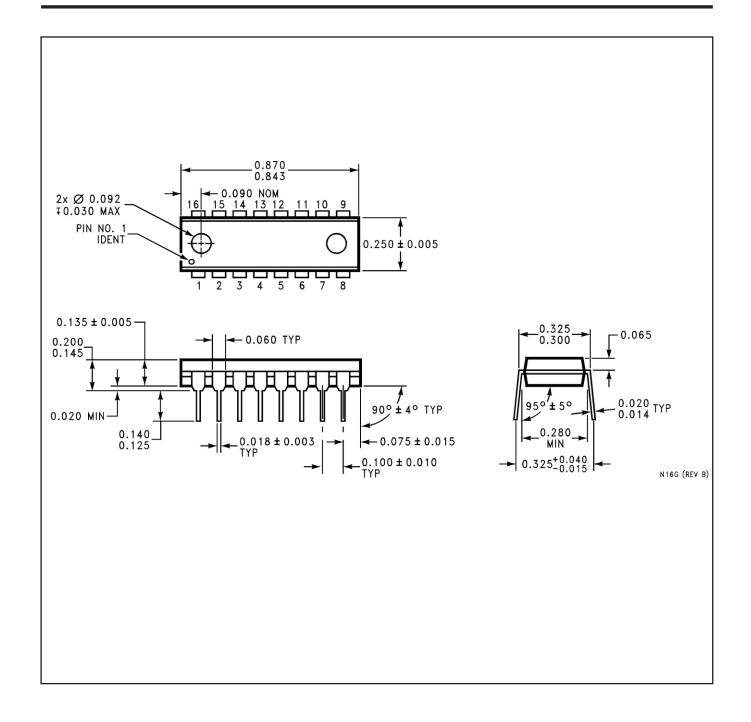
www.ti.com 17-Nov-2012


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP2952AIMX	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
LP2952AIMX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
LP2952IMX	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
LP2952IMX-3.3	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
LP2952IMX-3.3/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
LP2952IMX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
LP2953AIMX	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
LP2953AIMX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
LP2953IMX	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
LP2953IMX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1

www.ti.com 17-Nov-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP2952AIMX	SOIC	D	16	2500	349.0	337.0	45.0
LP2952AIMX/NOPB	SOIC	D	16	2500	349.0	337.0	45.0
LP2952IMX	SOIC	D	16	2500	349.0	337.0	45.0
LP2952IMX-3.3	SOIC	D	16	2500	349.0	337.0	45.0
LP2952IMX-3.3/NOPB	SOIC	D	16	2500	349.0	337.0	45.0
LP2952IMX/NOPB	SOIC	D	16	2500	349.0	337.0	45.0
LP2953AIMX	SOIC	D	16	2500	349.0	337.0	45.0
LP2953AIMX/NOPB	SOIC	D	16	2500	349.0	337.0	45.0
LP2953IMX	SOIC	D	16	2500	349.0	337.0	45.0
LP2953IMX/NOPB	SOIC	D	16	2500	349.0	337.0	45.0

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>