LP265,LP365

LP265 LP365 Micropower Programmable Quad Comparator

Literature Number: SNOSBC5A

LP265/LP365 Micropower Programmable Quad Comparator

General Description

Typical Connection

The LP365 consists of four independent voltage comparators. The comparators can be programmed, four at the same time, for various supply currents, input currents, response times and output current drives. This is accomplished by connecting a single resistor between the V_{CC} and I_{SET} pins.

These comparators can be operated from split power supplies or from a single power supply over a wide range of voltages. The input can sense signals at ground level even with single supply operation. The unique output NPN transistor stages are uncommitted to either power supply. They can be connected directly to various logic system supplies so that they are highly flexible to interface with various logic families.

Application areas include battery power circuits, threshold detectors, zero crossing detectors, simple serial A/D converters, VCO, multivibrators, voltage converters, power sequencers, and high performance V/F converters, and RTD linearization.

Features

- Single programming resistor to tailor power consumption, input current, speed and output current drive capability
- \blacksquare Wide single supply voltage range or dual supplies (4 V_{DC} to 36 V_{DC} or ± 2.0 V_{DC} to ± 18 V_{DC})
- \blacksquare Low supply current drain (10 $\mu A)$ and low power consumption (10 $\mu W/comparator)$ @ I_{SET} = 0.5 μA
- V_{CC} = 5_{VDC} ■ Uncommitted output stage—selectable output levels
- Output directly compatible with DTL, TTL, CMOS, MOS
- or other special logic families
- Input common-mode range includes ground
- Differential input voltage equal to the power supply voltage

Connection Diagram

©1995 National Semiconductor Corporation TL/H/5023

RRD-B30M115/Printed in U. S. A.

December 1994

Absolute Maximum Military/Aerospace speci lease contact the Natio ffice/Distributors for availa upply Voltage	n Ratings fied devices are required, nal Semiconductor Sales ability and specifications.	Power Dissipation (Note 3) T _j Max θ _{jA} Lead Temp.	M Package 500 mW 115℃ 115℃/W	N Pa 500 11 90°
Differential Input Voltage	$\pm 36 V_{DC}$ $\pm 36 V_{DC}$	(Soldering—10 sec.) (Vapor Phase—60 sec.)	215°C	26
Dutput Short Circuit to V _E (Not	e 2) Continuous	(Infrared—15 sec.) Operating Temp. Range LP365:	220°C 0°C ≤	$T_A \leq \cdot$
/ _{OUT} with Respect to V _E ESD Tolerance (Note 10)	V _E −7V≤V _{OUT} ≤V _E +36V 2000V	Storage Temp. Range	$-40^{\circ}C \le T$	$A \leq +$

Electrical Characteristics (Note 4) Low power V_S=5V, I_{SET}=10 μ A

			LP365A			LP365			
Symbol	Parameter	Conditions	Тур	Tested Limit (Note 5)	Design Limit (Note 6)	Тур	Tested Limit (Note 5)	Design Limit (Note 6)	Units (Limit)
V _{OS}	Input Offset Voltage	V _{CM} =OV, R _S =100	1	3	6	3	6	9	mV (Max)
l _{OS}	Input Offset Current	V _{CM} =0V LP265	2	20	50	4	25	75	nA (Max)
IB	Input Bias	V _{CM} =0V	10	50	125	4 15	25 75	150 200	nA
Ci	Current	LP265				15	75	300	(Max)
A _{VOL}	Large Signal Voltage Gain	R _L =100k	500	50	50	300	25	25	V/mV (Min)
V _{CM}	Input Common- Mode Voltage			0	0		0	0	V (Max)
Range	Range			3	3		3	3	V (Min)
CMRR	Common-Mode Rejection Ratio	$0 \le V_{CM} \le 3V$	85	75	70	80	75	70	dB (Min)
PSRR	Supply Voltage Rejection Ratio	$\pm 2.5V \le V_S$ $\le \pm 3.5V$	75	65	65	70	65	65	dB (Min)
I _S	Supply Current	All Inputs = 0V, $R_L = \infty$	215	250	300	225	275	300	μA (Max)
V _{OH}	Output Voltage High	$V_{C} = 5V,$ $V_{E} = 0V,$ $R_{L} = 100k$		4.9	4.5		4.9	4.5	V (Min)
V _{OL}	Output Voltage Low	V _E =0V		0.4	0.4		0.4	0.4	V (Max)
I _{SINK}	Output Sink Current	V _E =0V, V _O =0.4V	2.4	1.2	0.6	2.0	0.8	0.4	mA (Min)
I _{LEAK}	Output Leakage Current	$V_{C} = 5V,$ $V_{E} = 0V$	2	50	5000	2	100	5000	nA (Max)
t _R	Response Time	$V_{CC} = 5V,$ $V_{E} = 0V,$ $R_{L} = 5k,$ $C_{L} = 10 \text{ pF}$ (Note 7)	4			4			μs

		Conditions	LP365A			LP365			
Symbol	Parameter		Тур	Tested Limit (Note 5)	Design Limit (Note 6)	Тур	Tested Limit (Note 5)	Design Limit (Note 6)	Units (Limit)
V _{OS}	Input Offset Voltage	V _{CM} =0V, R _S =100	1	3	6	3	6	9	mV (Max)
I _{OS}	Input Offset Current	V _{CM} =0V LP265	5	50	100	10 10	90 90	200 500	nA (Max)
IB	Input Bias Current	V _{CM} =0V LP265	60	200	500	80 80	300 300	500 800	nA (Max)
A _{VOL}	Large Signal Voltage Gain	R _L =15k	500	100	100	500	100	100	V/mV (Min)
V _{CM} Input Common- Mode Voltage Range			- 15	- 15		- 15	- 15	V (Max)	
			13	13		13	13	V (Min)	
CMRR	Common-Mode Rejection Ratio	−15V≤V _{CM} ≤13V	85	75	70	80	75	70	dB (Min)
PSRR	Supply Voltage Rejection Ratio	$\pm 10V \le V_S$ $\le \pm 15V$	80	70	70	75	70	70	dB (Min)
I _S	Supply Current	All Inputs = 0V, $R_L = \infty$, LP265	2.6	3	3.3	2.8 2.8	3.5 3.5	3.7 4.3	mA (Max)
V _{OH}	Output Voltage High	$V_{C}=5V,$ $V_{E}=0V,$ $R_{L}=100k$		4.9	4.5		4.9	4.5	V (Min)
V _{OL}	Output Voltage Low	V _E =0V		0.4	0.4		0.4	0.4	V (Max)
I _{SINK}	Output Sink Current	V _E =0V, V _O =0.4V	10	8	5.5	7.5	6	4	mA (Min)
I _{LEAK}	Output Leakage Current	V _C =15V, V _E =-15V	5	50	5000	5	50	5000	nA (Max)
t _R	Response Time	$V_{CC} = 5V,$ $V_{E} = 0V,$ $R_{L} = 5k,$ $C_{L} = 10 \text{ pF}$ (Note 7)	1.0			1.0			μs

Note 1: The input voltage is not allowed to go 0.3V above V⁺ or -0.3V below V⁻ as this will turn on a parasitic transistor causing large currents to flow through the device.

Note 2: Short circuits from the output to V⁺ may cause excessive heating and eventual destruction. The current in the output leads and the V_E lead should not be allowed to exceed 30 mA. The output should not be shorted to V⁻ if V_E \leq (V⁻) + 7V.

Note 3: For operating at elevated temperatures, these devices must be derated based on a thermal resistance of θ_{jA} and T_j max. $T_j = T_A + \theta_{jA} P_D$.

Note 4: Boldface numbers apply at temperature extremes. All other numbers apply at $T_A = T_j = 25^{\circ}$ C, $V^+ = 5V$, $V^- = 0V$, $I_{SET} = 10 \ \mu$ A, $R_L = 100$ k, and $V_C = 5V$ as shown in the Typical Connection diagram.

Note 5: Guaranteed and 100% production tested.

Note 6: Guaranteed (but not 100% production tested) over the operating temperature and supply voltage ranges. These limits are not used to calculate out-going quality levels.

Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive.

Note 8: Boldface numbers apply at temperature extremes. All other numbers apply at $T_A = T_j = 25^{\circ}$ C. $V^+ = +15$ V, $V^- = -15$ V, $I_{SET} = 100 \ \mu$ A, $R_L = 100$ k, and $V_C = 5$ V as shown in the Typical Connection diagram.

Note 9: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Note 10: Human body model, 1.5 k Ω in series with 100 pF.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated