

www.ti.com

SNVS261A-MAY 2004-REVISED OCTOBER 2011

LP3939 Power Amplifier Driver for Dual Band CDMA Handsets

Check for Samples: LP3939

•

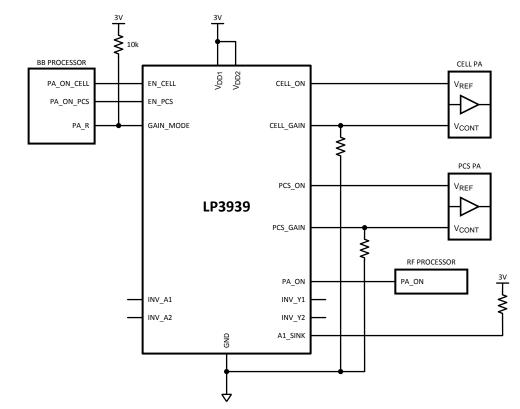
KEY SPECIFICATIONS

LLP16 Package

0.002 µA Quiescent Current (typ)

FEATURES

• Power-switch for dual band CDMA power amplifier


APPLICATIONS

 Dual-band CDMA phones with MSM3xxx or MSM5xxx platform

DESCRIPTION

Designed specifically for Qualcomm's MSM3xxx and MSM5xxx series, the LP3939 is an integrated device that provides interface to the baseband processor to power-switch two independent power amplifiers in dual band applications. By integrating the discrete components necessary to achieve the same functions, the LP3939 drastically reduces board space and component cost.

LP3939 Application Circuit

NOTE: This application circuit shows the connection interface to a typical Skyworks PA. Connections to other PA vendors may vary slightly.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

TEXAS INSTRUMENTS

www.ti.com

SNVS261A - MAY 2004 - REVISED OCTOBER 2011

Connection Diagram

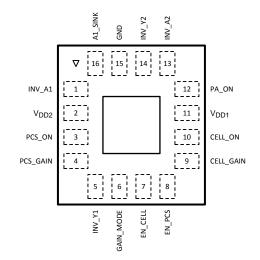


Figure 1. Top View

Table 1. Pin Descriptions

Pin	Name	Functional Description
1	INV_A1	Input
2	V _{DD2}	Supply. V_{DD1} and V_{DD2} must be tied together externally.
3	PCS_ON	Output, open drain
4	PCS_GAIN	Output, open drain
5	INV_Y1	Output
6	GAIN_MODE	Input
7	EN_CELL	Input
8	EN_PCS	Input
9	CELL_GAIN	Output, open drain
10	CELL_ON	Output, open drain
11	V _{DD1}	Supply. V_{DD1} and V_{DD2} must be tied together externally.
12	PA_ON	Output
13	INV_A2	Input
14	INV_Y2	Output, open drain
15	GND	GND
16	A1_SINK	Output, open drain

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SNVS261A - MAY 2004 - REVISED OCTOBER 2011

www.ti.com

(3)

Absolute Maximum Ratings (1) (2)

V _{DD1} , V _{DD2}	-0.3V to +6.0V
EN_CELL, EN_PCS, GAIN_MODE, INV_A1, INV_A2, PA_ON, INV_Y1, CELL_ON, CELL_GAIN, PCS_ON, PCS_GAIN, INV_Y2 and A1_SINK	-0.3V to (V _{DD} + 0.3V)
GND to GND SLUG	±0.3V
Junction Temperature	150°C
Maximum Power Dissipation ⁽³⁾	2.0W
Storage Temperature	−65°C to +150°C
ESD ⁽⁴⁾ :	
Human Body Model	2 kV
Machine Model	200V

(1) All voltages are with respect to the potential at the GND pin.

Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which (2) operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the $T_{\rm J}$ - $T_{\rm A}$

 $PD = \frac{PD}{\theta_{JA}}$ where T_J is the junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient temperature. The 2.0W rating appearing under Absolute Maximum Ratings results from substituting the Absolute Maximum junction temperature, 150°C for T_J , 70°C for T_A and 39.8°C/W for θ_{JA} . More power can be dissipated safely at ambient temperatures below 70°C. Less power can be dissipated safely at ambient temperatures above 70°C. The Absolute Maximum power dissipation can be increased by 25 mW for each degree below 70°C, and it must be derated by 25 mW for each degree above 70°C.

The human body model is 100 pF discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor (4) discharged directly into each pin.

Operating Ratings (1) (2)

PD =

V _{DD1} , V _{DD2}	1.8V to 5.5V
Junction Temperature	−40°C to +125°C
Operating Temperature	−40°C to +85°C
Thermal Resistance θ _{JA} (LLP16)	39.8°C/W
Maximum Power Dissipation	1.38W

(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

All voltages are with respect to the potential at the GND pin.

Like the Absolute Maximum power dissipation, the maximum power dissipation depends on the ambient temperature. The 1.38W rating (3)appearing under Absolute Maximum Ratings results from substituting the Maximum junction temperature, 125°C for T_J, 70°C for T_A and 39.8°C/W for 0, JA. More power can be dissipated safely at ambient temperatures below 70°C. Less power can be dissipated safely at ambient temperatures above 70°C. The Absolute Maximum power dissipation can be increased by 25 mW for each degree below 70°C, and it must be derated by 25 mW for each degree above 70°C.

SNVS261A - MAY 2004 - REVISED OCTOBER 2011

www.ti.com

DC Electrical Characteristics

Unless otherwise noted, $V_{DD1} = V_{DD2} = 3V$. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in **boldface type** apply over the entire junction temperature range for operation, -40°C to +85°C. ⁽¹⁾

Symbol	Parameter	Conditions	Turn	Limit		11-14	
		Conditions	Тур	Min	Max	Units	
I _{IN}	Input Current	All Input Pins	0.05		5	μA	
l _Q	Quiescent Current	All inputs tied to V_{DD} or ground. No load at the outputs.	0.002		5	μA	
I _{LEAKAGE}	Output Leakage Current	CELL_ON, PCS_ON CELL_GAIN, PCS_GAIN			10 µA		
		A1_SINK			5		
R _{DS-ON}	MOSFET's ON Resistance	P-Ch, V _{DD} = 3V CELL_ON, PCS_ON CELL_GAIN, PCS_GAIN	275		500		
		P-Ch, V _{DD} = 2V CELL_ON, PCS_ON CELL_GAIN, PCS_GAIN	430		650	mΩ	
V _{IH}	Logic High Input	$1.8V \le V_{DD} < 2.5V$ EN_CELL, EN_PCS, INV_A1, GAIN_MODE, INV_A2		1.4		V	
		$2.5V \le V_{DD} \le 3.5V$ EN_CELL, EN_PCS, INV_A1, GAIN_MODE, INV_A2		2.0			
VIL	Logic Low Input	$1.8V \le V_{DD} \le 3.5V$ EN_CELL, EN_PCS, INV_A1, GAIN_MODE, INV_A2			0.4	V	
V _{OH}	Logic High Output	PA_ON, INV_Y1, I _{SOURCE} = 1 mA	2.93	2.8		- V	
		INV_Y2, I _{SOURCE} = 1 mA	2.74	2.5		V	
V _{OL}	Logic Low Output	PA_ON, INV_Y1, I _{SINK} = 1 mA	80		200		
		INV_Y2, A1_SINK I _{SINK} = 1 mA	16		55	mV	

(1) All limits are guaranteed by testing or statistical analysis.

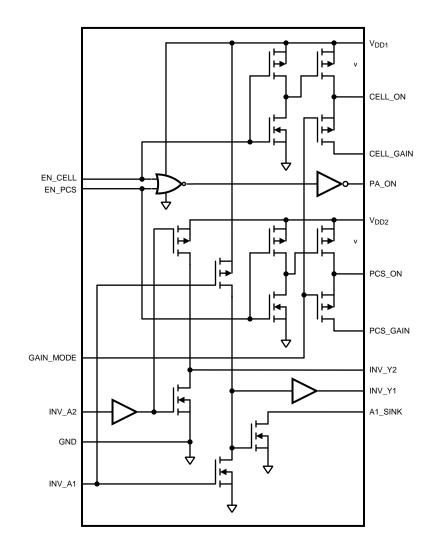
SNVS261A-MAY 2004-REVISED OCTOBER 2011

www.ti.com

AC Electrical Characteristics

Unless otherwise noted, $V_{DD1} = V_{DD2} = 3V$, $C_{LOAD} = 50$ pF. Typical values and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in **boldface type** apply over the entire junction temperature range for operation, -40° C to $+85^{\circ}$ C. ⁽¹⁾

Symbol	Parameter	Conditions	Tour	Limit		11
		Conditions	Тур	Min	Max	Units
	Propagations Delay Low to High	EN_CELL to PA_ON or EN_PCS to PA_ON	10		80	ns
		EN_CELL to CELL_ON or EN_PCS to PCS_ON $R_{PD} = 100\Omega$	7		56	ns
		GAIN_MODE to CELL_GAIN or GAIN_MODE to PCS_GAIN $R_{PD} = 100\Omega$	7		56	ns
		INV_A1 to INV_Y1	10		80	ns
		INV_A2 to INV_Y2	25		200	ns
	Propagations Delay High to Low	EN_CELL to PA_ON or EN_PCS to PA_ON	10		80	ns
		EN_CELL to CELL_ON or EN_PCS to PCS_ON $R_{PD} = 100\Omega$	25		200	ns
		GAIN_MODE to CELL_GAIN or GAIN_MODE to PCS_GAIN $R_{PD} = 100\Omega$	20		160	ns
		INV_A1 to INV_Y1	10		80	ns
		INV_A1 to A1_SINK R_{PU} = 10 k Ω	5		40	ns
		INV_A2 to INV_Y2	5		40	ns
t _{RISE}	Rise Time	PA_ON	15		120	
		INV_Y2	50		400	ns
		INV_Y1	20		160	
T _{FALL}	Fall Time	PA_ON	15		120	
		INV_Y2	10		80	ns
		INV_Y1	20		160	


(1) All AC parameters are guaranteed by design, not production tested.

SNVS261A - MAY 2004 - REVISED OCTOBER 2011

www.ti.com

LP3939 Block Diagram

SNVS261A-MAY 2004-REVISED OCTOBER 2011

www.ti.com

Truth Tables

INPUTS		OUTPUTS ⁽¹⁾			
EN_CELL	EN_PCS	CELL_ON PCS_ON PA_ON			
0	0	0	0	0	
1	0	1	0	1	
0	1	0	1	1	
1	1	Not Valid			

Table 2. PA Enables

(1) Note: Measured with a 10 k Ω pull down resistor on CELL_ON and PCS_ON.

Table 3. PA Gain Mode

	INPUTS	OUTPUTS ⁽¹⁾			
GAIN_MODE	EN_CELL	EN_PCS	CELL_GAIN	PCS_GAIN	
0	0	0	0	0	
0	1	0	1	0	
1	1	0	0	0	
0	0	1	0	1	
1	0	1	0	0	
Х	1	1	Not Valid		

(1) Note: Measured with a 10 k Ω pull down resistor on CELL_GAIN and PCS_GAIN.

Table 4. Current Sink Control

INPUTS	OUTPUTS ⁽¹⁾		
INV_A1	INV_Y1	A1_SINK	
0	1	0	
1	0	1	
INV_A2	INV_Y2		
0	1		
1	0		

(1) **Note:** Measured with a 10 k Ω pull up resistor on A1_SINK.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated