
LPR₃₀

LOW DROP VOLTAGE REGULATOR DRIVE FOR EXTERNAL N-CHANNEL POWER MOSFET

- VERY LOW DROPOUT POWER MOSFET DRIVER
- HIGH PRECISION Vref = 2.5V (± 1%)
- VERY LOW CURRENT DRAIN (TYP. 2mA)
- REFERENCE OUTPUT CURRENT UP TO 20mA
- OPERATING SUPPLY VOLTAGE FROM 5V TO 30V
- MAXIMUM INPUT VOLTAGE ON-GATE PIN (N. 8) UP TO 60V
- INTERNAL CURRENT LIMIT OPERATIONAL AMPLIFIER OFFSET TRIMMED AT 50mV ± 7mV
- NO CAPACITOR IS NEEDED FOR STABILITY OF REFERENCE OUTPUT
- TEMPERATURE RANGE 0 °C TO 70 °C

APPLICATION

- ULTRA HIGH CURRENT ULTRA LOW DROPOUT VOLTAGE REGULATOR
- CONSTANT HIGH CURRENT SOURCE

- LOW PARTS COUNT 5V TO 3.3V COMPUTER SUPPLY
- LOW NOISE/LOW DROP SMPS POST REGULATOR

DESCRIPTION

The LPR30 is a very Low Dropout Regulator Controller in a single IC solution for very high current low dropout linear voltgage regulator. It uses an external N-CHANNEL POWER MOSFET as the linear pass element. The LPR30 features a dropout voltage as low as the R_{DS(on)} of the

BLOCK DIAGRAM

June 1997 1/10

external Power MOSFET multiplied by the output current. Consequently the output current can be as high as the POWER MOSFET can provide (also using an adeguate heatsink).

The V_{CC} of the LPR30 range from 5V to 30V. For very low drop voltage operation,the LPR30 requires an external gate drive supply to provide the control voltage needed to drive the gate of the external POWER MOSFET.

The regulator output is constant-current limited when the controller detects 50mV across an external sense resistor.

It has an internal high precision (\pm 1%) Voltage Reference at 2.5V

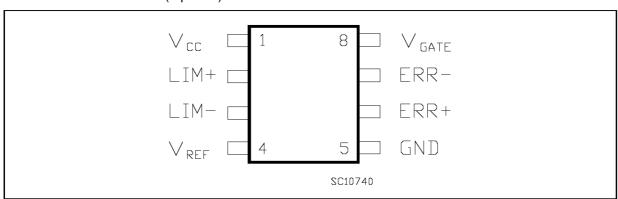
The output regulated voltage is possible to program to any voltage from 1V to more than 50V.

Flexible design is achieved by the availability of the Voltage Reference Output through an external pin (N.4) that is able to supply more than 20mA as load current. The LPR30 is available in 8 pin plastic DIP and in SO-8 for SMD. In both package versions it is able to operate from 0°C to 70°C.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	DC Input Voltage	36	V
I _{oREF}	Reference Output Current	Internally Limited	
P _{tot}	Power Dissipation	1	W
Top	Operating Junction Temperature Range	0 to 70	°C
T _{stg}	Storage Temperature Range	- 40 to 150	°C
V _{gate}	Maximum Gate Voltage (pin n8)	60	V
I _{gate}	Maximum Gate Current (pin n8)	200	mΑ

Absolute Maximum Ratings are those values beyond which damage to the device may occur.


Functional operation under these conditions is not implied.

THERMAL DATA

Symbol	ymbol Parameter		SO-8	Unit
R _{thj-amb}	Thermal Resistance Junction-ambient (*) Max	130 to 180	100 to 150	°C/W

^(*) This value depends from thermal design of PCB on which the device is mounted.

CONNECTION DIAGRAM (top view)

ORDERING NUMBERS

Туре	DIP-8	SO-8	SO-8 (tape & reel)
LPR30	LPR30N	LPR30D	LPR30D-TR

ELECTRICAL CHARACTERISTICS

(Refer to the test circuits, $V_{CC} = 10V$, $T_j = 25$ °C unless otherwise specified.

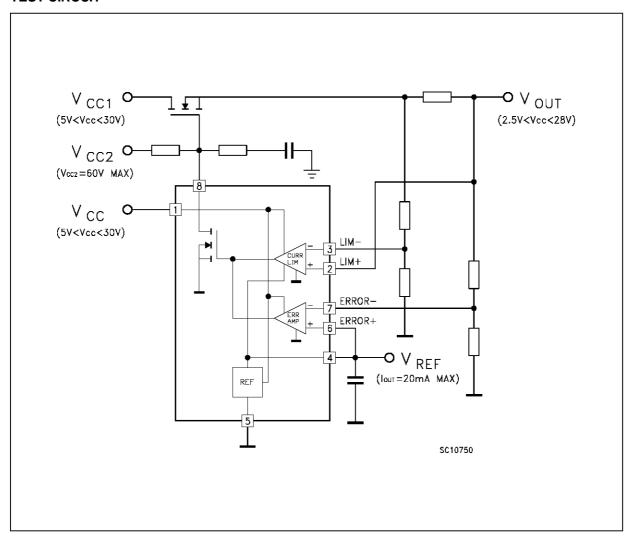
GENERAL

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vcc	Operating Supply Voltage		5		30	V
I _{CC}	Supply Current	$I_K = 0 \mu A$ $V_{CC} = 30 V$ $T_j = 0 \text{ to } 70 ^{\circ} C$ ERR(-), LIM(-) = 1V ERR(+), LIM(+) = 0V		2	4	mA
V _{OSAT}	Output Saturation Voltage	$V_{CC} = 5 \text{ V} I_{O} = 100 \text{ mA}$ $T_{j} = 0 \text{ to } 70 ^{\circ}\text{C}$ $ERR(-), LIM(-) = 1 \text{ V}$ $ERR(+), LIM(+) = 0 \text{ V}$		280	500	mV
l _{OLK}	Output Leakage Current	$V_{CC} = 5 \text{ V} V_O = 60 \text{ V}$ ERR(-), LIM(-) = 0V ERR(+), LIM(+) = 1V			100	μА

REFERENCE BLOCK

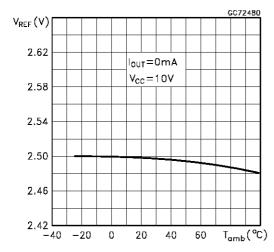
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{REF}	Reference Output Voltage	$I_K = 10 \text{ mA}$ $I_K = 10 \text{ mA}$ $T_j = 0 \text{ to } 70 ^{\circ}\text{C}$	2.475 2.45	2.5 2.5	2.525 2.55	V V
I _K	Reference Output Current		20			mA
$\Delta V_{REF}/\Delta I_{K}$	Reference Output Voltage Change	$I_K = 1 \text{ to } 20 \text{ mA}$ $C_{REF} = 0 \text{ pF}$		3		mV
SVR	Supply Voltage Rejection	V_{IN} < 10 V ±1V f = 120 Hz C_{REF} = 0 pF		70		dB
eN	Output Noise	B = 10 Hz to 10 KHz $I_K = 10 \text{ mA } C_{REF} = 0 \text{ pF}$		50		μV

ERROR AMPLIFIER BLOCK

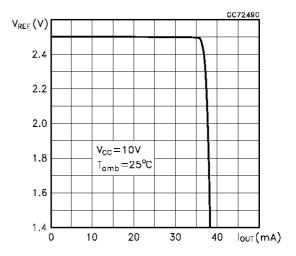

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Ι _Β	Input Bias Current			0.3	1	μΑ
Vos	Input Offset Voltage	$V_{CC} = 5 \text{ to } 30 \text{ V}$ $T_j = 0 \text{ to } 70 ^{\circ}\text{C}$			5	mV
los	Input Offset Current			5	50	nA
Gv	Open Loop Gain	T _j = 0 to 70 °C	80			dB
V _{CM}	Input Common Mode Voltage Range	$T_j = 0$ to 70 $^{\circ}$ C	1		V _{CC} -1	V
CMR	Common Mode Rejection			70		dB
SVR	Supply Voltage Rejection	$V_{IN} = 9 \text{ to } 11V f = 120Hz$ $V_{IN} = 9 \text{ to } 11V f = 10KHz$	70 60			dB dB

CURRENT LIMITING BLOCK

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Ι _Β	Input Bias Current				0.5	μΑ
Vos	Input Offset Voltage	T _j = 0 to 70 °C	43	50	57	V
G _V	Open Loop Gain	T _j = 0 to 70 °C	50			dB
V _{CM}	Input Common Mode Voltage Range	$T_j = 0 \text{ to } 70 ^{\circ}\text{C}$	0		V _{CC} -3	V

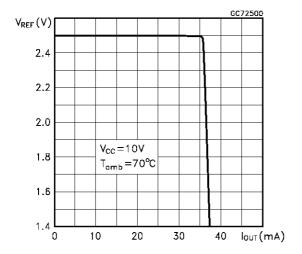


TEST CIRCUIT

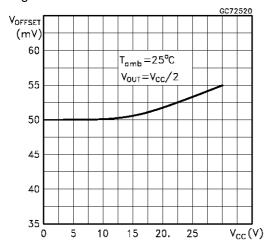


TYPICAL PERFORMANCE CHARACTERISTICS

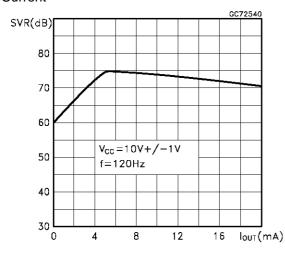
Reference Output Voltage vs Temperature

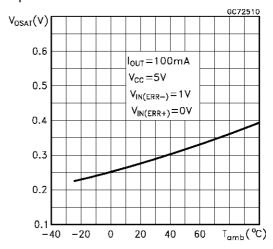


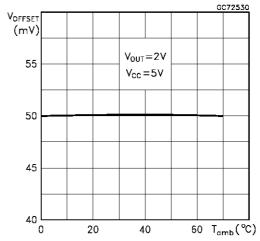
Reference Output Voltage vs Load Current

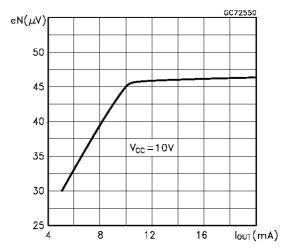


4/10


Reference Output Voltage vs Load Current


Current Limit Input Offset Voltage vs Supply Voltage


Reference Supply Voltage Rejection vs Output Current


Error Amplifier Output Saturation Voltage vs Temperature

Current Limit Input Offset Voltage vs Supply Voltage

Reference Output Noise vs Output Current

APPLICATION INFORMATION

Figure 1: LPR30 Typical Application

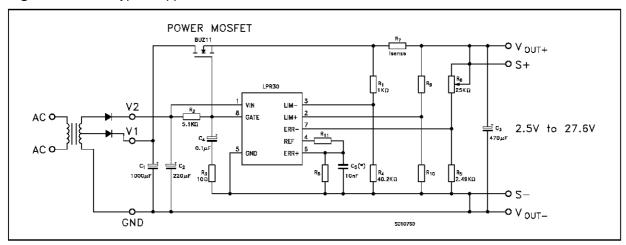
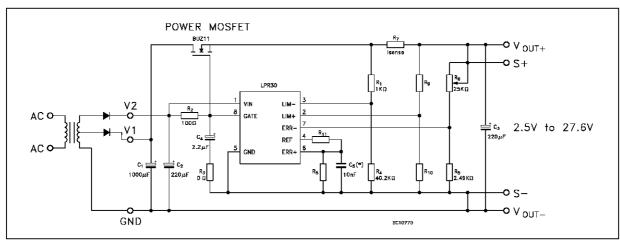
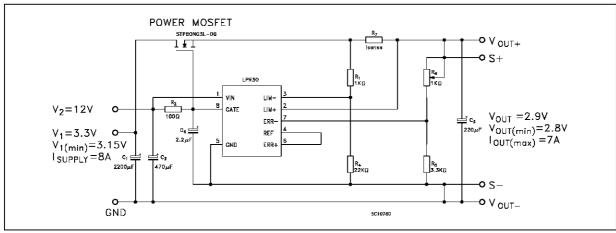
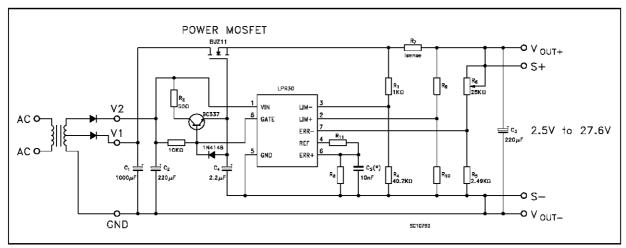


Figure 2: Configuration For Faster Response


Figure 3: Configuration For $V_{IN} = 3.3V$, $V_{OUT} = 2.9V$, $I_{OUT} = 7A$

(*) This capacitor improves noise performance; can be omitted in most applications

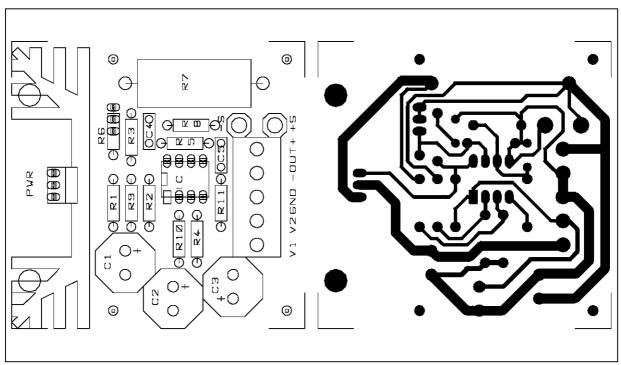
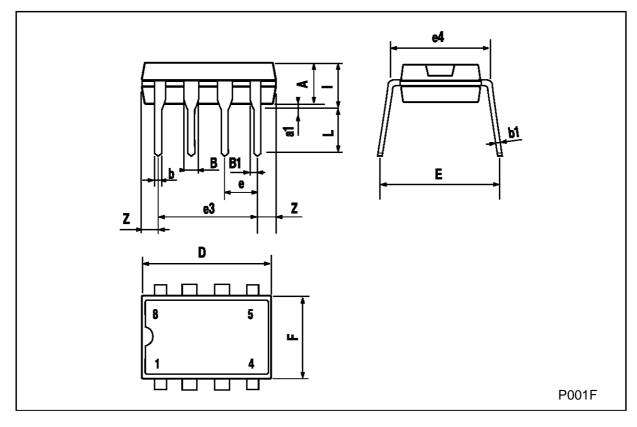
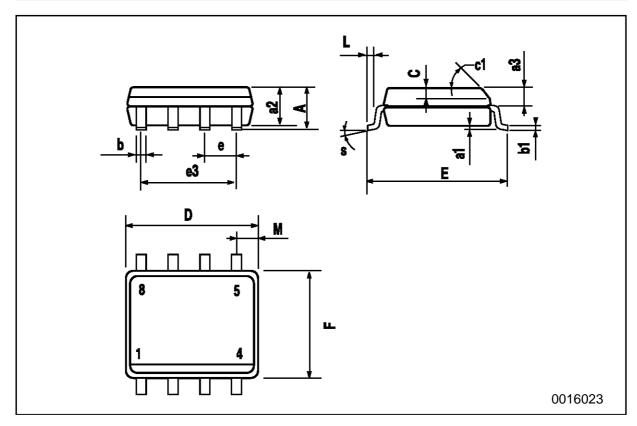

APPLICATION INFORMATION (contiued)

Figure 4: Application For Very Fast Responce Speed

(*) This capacitor improves noise performance; can be omitted in most applications


STANDARD APPLICATION DEMOBOARD

Note: This demoboard refers to the typical application shown in figure 1


Plastic DIP-8 MECHANICAL DATA

DIM.		mm		inch		
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
Е		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
ı			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063

SO-8 MECHANICAL DATA

DIM.		mm			inch			
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.25	0.003		0.009		
a2			1.65			0.064		
a3	0.65		0.85	0.025		0.033		
b	0.35		0.48	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С	0.25		0.5	0.010		0.019		
c1			45	(typ.)				
D	4.8		5.0	0.188		0.196		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		3.81			0.150			
F	3.8		4.0	0.14		0.157		
L	0.4		1.27	0.015		0.050		
М			0.6			0.023		
S		8 (max.)						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

 $\ @$ 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

