

Initial Release

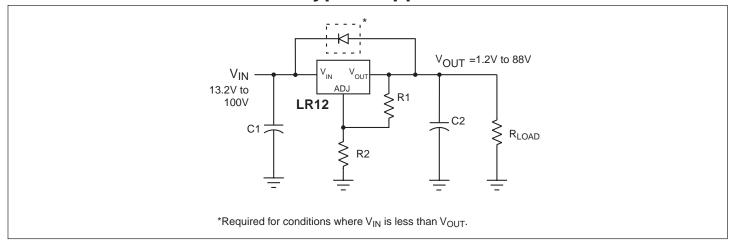
High Input Voltage Adjustable 3-Terminal Linear Regulator

Features

- ☐ 13.2V to 100V Input Voltage Range
- ☐ Stable with 100nF output capacitor
- Adjustable 1.20V to 88V output regulation
- 5% reference voltage tolerance
- ☐ Output current limiting, 50mA min.
- 10μA typical ADJ current
- Over temperature protection
- Available in 3 different packages

Applications

- □ DC/DC SMPS startup circuits
- Adjustable high voltage constant current sources
- Industrial Controls
- Motor Controls
- Battery Powered Systems
- Power Supplies
- Telecom Applications
- LED Drivers
- Automotive Applications

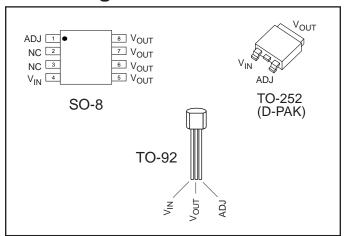

General Description

The Supertex LR12 is a high voltage, low output current, adjustable linear regulator. It has a wide operating input voltage range of 13.2V to 100V. The output voltage can be adjusted from 1.20V to 88V provided that the input voltage is at least 12V greater than the output voltage. The output voltage can be adjusted by means of two external resistors R1 and R2 as shown in the typical application circuits. The LR12 regulates the voltage difference between V_{OUT} and ADJ pins to a nominal value of 1.20V. The 1.20V is amplified by the external resistor ratio R1 and R2. An internal constant bias current of typically $10\mu\text{A}$ is connected to the ADJ pin. This increases V_{OUT} by a constant voltage of $10\mu\text{A}$ times R2.

The LR12 has current limiting and temperature limiting. The output current limit is 100mA maximum and the minimum temperature limit is 125°C. An output short circuit current will therefore be limited to 100mA maximum. When the junction temperature reaches its temperature limit, the output current and/or output voltage will decrease to keep the junction temperature from exceeding its temperature limit. For SMPS start-up circuit applications, the LR12 turns off when an external voltage greater than the output voltage of the LR12 is applied to V_{OUT} of the LR12. To maintain stability, a bypass capacitor of 100nF or larger and a minimum DC output current of $500\mu\text{A}$ are required.

The device is available in TO-92, SO-8, and TO-252 (D-PAK) packages.

LR12 Typical Application


Ordering Information

Package Options							
SO-8	TO-252	TO-92					
LR12LG	LR12K4	LR12N3					

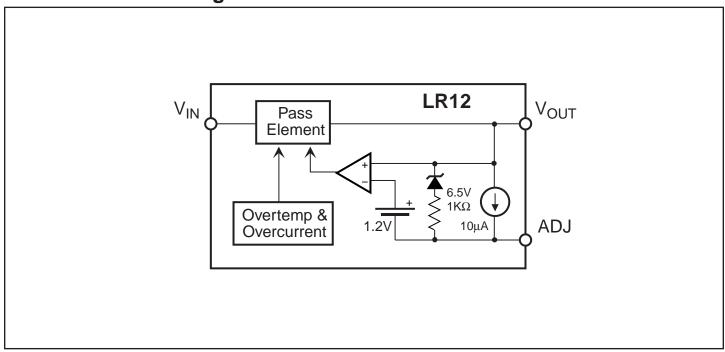
Absolute Maximum Ratings

V_{IN-ADJ}	-0.5V to +120V
$V_{\text{OUT-ADJ}}$	-10V to +10V
$V_{\text{IN}} - V_{\text{OUT}}$	-0.5V to +120V
Operating Ambient Temperature Range	-40°C to +85°C
Operating Junction Temperature Range	-40°C to +125°C
Storage Temperature Range	-65°C to +150°C

Pin Configurations

Electrical Characteristics

Test conditions unless otherwise specified: $-40^{\circ}\text{C} < T_{_A} < 85^{\circ}\text{C}$.


Symbol	Parameter	Min	Тур	Max	Units	Test Conditions	
V _{IN} - V _{OUT}	Input to Output Voltage Difference	12		98.8	V		
V _{OUT}	Overall Output Voltage Regulation	1.14	1.20	1.26	V	13.2V <v<sub>IN<100V, R1=2.4KΩ, R2=0</v<sub>	
ΔV_{OUT}	Line Regulation		0.003	0.01	%/V	15V <v<sub>IN<100V, V_{OUT}=5V, I_{OUT}=0.5mA</v<sub>	
ΔV_{OUT}	Load Regulation		1.4	3.0	%	V _{IN} =15V, V _{OUT} =5V, 0.5mA <i<sub>OUT<50mA</i<sub>	
ΔV_{OUT}	Temperature Regulation	-1		+1	%	V _{IN} =15V, V _{OUT} =5V, I _{OUT} =10mA,	
						-40°C <t<sub>A<85°C</t<sub>	
I _{OUT}	Output Current Limit	50		100	mA	$T_J < 85^{\circ}C, V_{IN} - V_{OUT} = 12V$	
I _{OUT}	Output Current Limit			0.5	mA	$T_J > 125^{\circ}C, V_{IN} - V_{OUT} = 100V$	
I _{OUT}	Minimum Output Current	0.5			mA	Includes R1 and load current	
I _{ADJ}	Adjust Output Current	5	10	15	μΑ		
C2	Minimum Output Load Capacitance	100			nF		
DV _{OUT} /DV _{IN}	Ripple Rejection Ratio	50	60		dB	120Hz, V _{OUT} = 5V	
T _{LIMIT}	Junction Temperature Limit	125			°C		

Thermal Characteristics

Package	Power Dissipation @ T _A =25°C	οC/W	θ _{JA} °C/W
TO-92	0.6W	125	170
SO-8	1.8W	_	55†
TO-252	2.0W	6.25	50 [†]

Mounted on FR4 board, 25mm x 25mm x 1.57mm. Significant P_D increase possible on ceramic substrate.

Functional Block Diagram

Typical Application Circuits

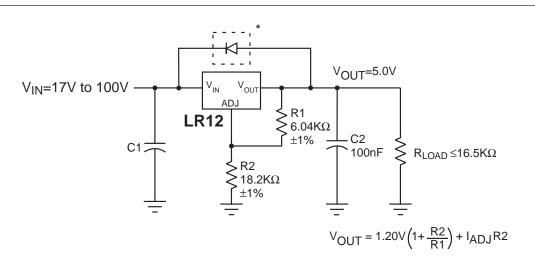


Figure 1: High Input Voltage, 5.0V Output Linear Regulator

* Required for conditions where $V_{\mbox{\tiny IN}}$ is less than $V_{\mbox{\tiny OUT}}.$

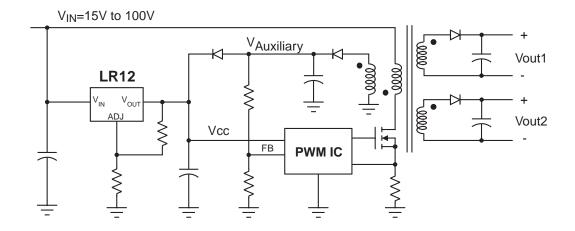
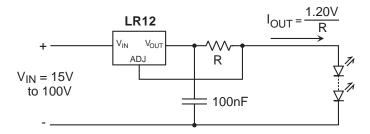
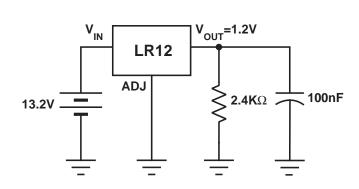
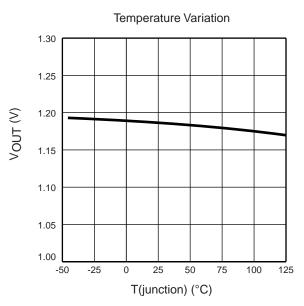
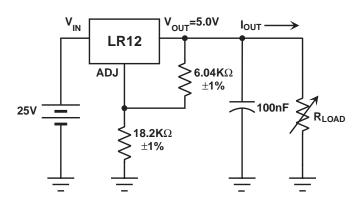
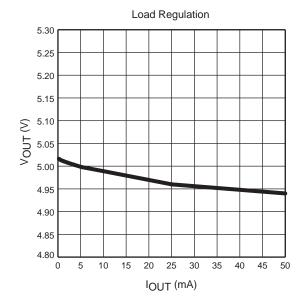
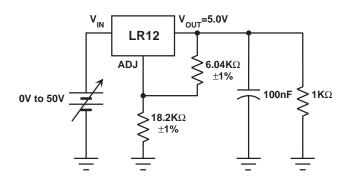


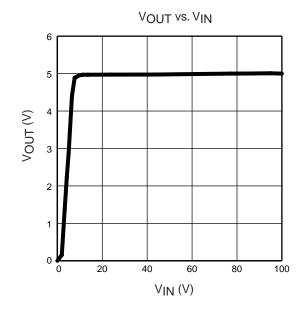
Figure 2: SMPS Start-Up Circuit

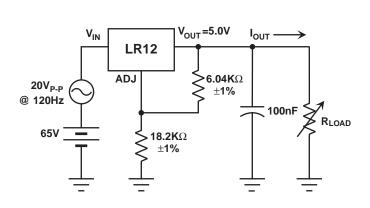





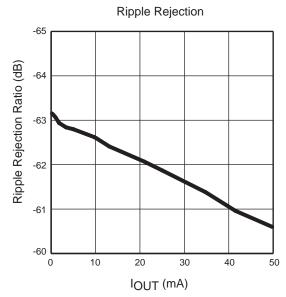

Figure 3: High Voltage Adjustable Constant Current Source

Typical Performance Curves

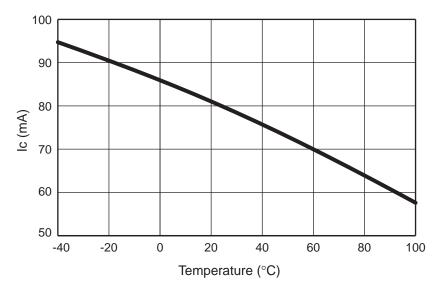


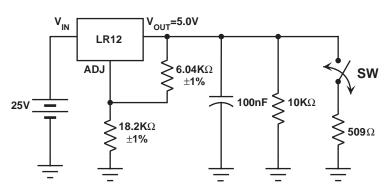


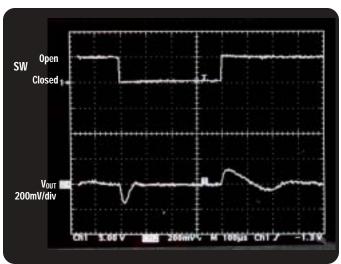




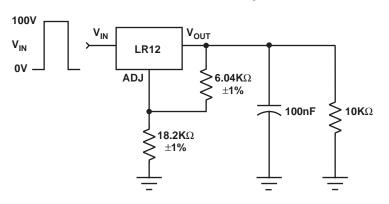
Typical Performance Curves

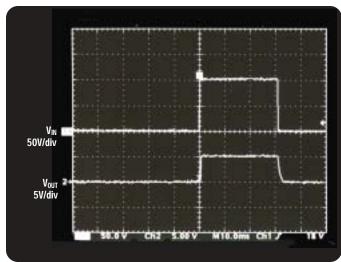


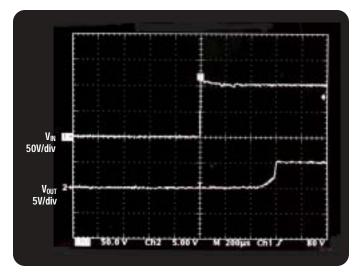



Current Limit

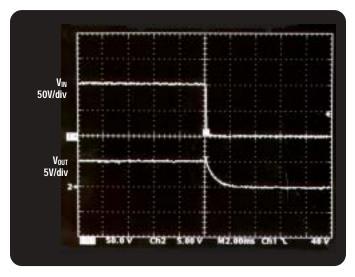
Typical Performance Curves


Load Transient Response




Load Transient Response, Load=509 Ω

Line Transient Response



Line Turn On/Off Response

Line Power Down Transient

06/16/03rev.5