Quad Short-Haul PCM Analog Interface

Datasheet

The LXT335 is a quad, short-haul, PCM analog line interface for 2.048 Mhz transmission systems. It includes four independent data receivers and four independent line drivers in a single, 64-pin QFP package. Its low impedance transmit output drivers provide constant line impedance whether transmitting marks or spaces. The output pulse amplitudes are also constant, and are stabilized against supply voltage variations. The LXT335 is configurable for either balanced 120 Ω or unbalanced 75 Ω systems and exceeds latest ETSI return loss recommendations. All transmitters incorporate a power down mode with output tri-stating.

The LXT335 features a differential receiver architecture with high noise interference margin. It uses peak detection with a variable threshold for reliable data recovery as low as 500 mV (up to 12 dB of cable attenuation). Each receiver incorporates an analog loss of signal (LOS) detector that meets latest ITU standards. The LXT335 features a driver failure monitoring circuit in parallel to TTIP and TRING that reports driver shorts.

Applications

 High-density E1 line interface cards using digital backend ASICS

Product Features

- Quad E1 short haul PCM analog front-end per ITU G.703
- Single rail supply voltage of 5 V (typical)
- Low power consumption of 410 mW (typical)
- Four independent high-performance line drivers with constant low impedance for typical 20 db return loss
- Voltage stabilized output amplitudes

- Multiplexers, digital crossconnects, SDH systems
- Four high performance line receivers with 14 db, single tone interference margin
- Data recovery for cable attenuation of up to 12 db at 1024 khz
- On-chip driver short circuit monitoring function
- Local and remote loopback testing function
- Small footprint 64-pin QFP package

intel

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The LXT335 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

*Third-party brands and names are the property of their respective owners.

intel_® Contents

1.0	Pin Assignments and Signal Descriptions				
2.0	Fun	ctional Description	7		
	2.1	Receiver	7		
		2.1.1 Loss Of Signal Detector	7		
	2.2	Transmitter	7		
		2.2.1 Driver Failure Monitor	8		
		2.2.2 Line Protection	8		
	2.3	Diagnostic Mode Of Operation	9		
		2.3.1 Loopback	9		
3.0	Арр	lication Information	10		
4.0	Test	t Specifications	16		
5.0	Мес	hanical Specifications	20		

Figures

1	LXT335 Block Diagram	5
2	LXT335 64Pin Assignments and Markings	6
3	Low Power Transmit Interface for Coax Cables	.10
4	Transmit Interface for Coax Cables	.11
5	Low Power Transmit Interface for Twisted Pair Lines	.12
6	Transmit Interface for Twisted Pair Lines	.13
7	Receive Interface for Twisted Pair Lines	.13
8	Receive Interface for Twisted-Pair Lines	.13
9	E1 120 W and 75 W Matched Line Applications	.15
10	Receive Timing Specifications	.18
11	2.048 MHz Pulse Mask G.703	.19
12	Package Specifications	.20

Tables

1	Transformer Selection Guide1	14
2	Transmit Transformer and Resistor Combinations	14
3	Absolute Maximum Ratings	
4	Recommended Operating Conditions	
5	DC Characteristics (over recommended range)	
6	Receive Characteristics	
7	Transmit Timing Characteristics	
8	Receive Timing Characteristics (See Figure 10)	

Revision History

Revision	Date	Description

Figure 1. LXT335 Block Diagram

1.0 Pin Assignments and Signal Descriptions

Figure 2. LXT335 64Pin Assignments and Markings

2.0 Functional Description

Page 1 shows a simplified block diagram of the LXT335. The LXT335 is a quad line interface unit with four on-chip transmit drivers and four data receivers optimized for G.703 2.048 MHz applications. The front end of each line interface interfaces with four lines, one pair for transmit, one pair for receive. These two lines comprise a digital data loop for full duplex transmission. Each line interface also interfaces with back-end processors, through bipolar data I/O channels, and allows control by hardwired pins for stand-alone operation.

2.1 Receiver

The four LXT335 receivers are identical. The following paragraphs describe the operation of a single receiver. LXT335 receives the input signal via a 1:1 transformer. Recovered data is active low and output at PMARK and NMARK. Timing information for external clock recovery is output at RCLK.

A peak detector and data slicers process the received signal. The peak detector samples the received signal and determines its maximum value. A percentage of the peak value is provided to the data slicers as a threshold level of 50% to ensure an optimum signal-to-noise ratio.

The receiver is capable of accurately recovering signals with up to 12 dB of cable attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Regardless of received signal level, LXT335 holds its peak detectors above a minimum level of 0.225 V (typical) to provide immunity from impulsive noise.

After the data slicers process, the received signal goes to the data recovery and pulse stretcher section and then to the receive outputs **PMARK** and **NMARK**.

2.1.1 Loss Of Signal Detector

The Loss of Signal Detector uses an analog detection scheme and complies with the ITU G.775 recommendation. During LOS conditions, received data is output on PMARK/NMARK. Any signal ~22 dB below the nominal 0 dB signal generates a loss of signal condition. LOS is deactivated again when the signal level rises to more than ~21 dB (typical) below the minimum 0 dB level. The PMARK and NMARK outputs stay active for external digital signal transition detection.

2.2 Transmitter

The four LXT335 low power transmitters are identical. The following paragraphs describe the operation of a single transmitter.

Bipolar transmit data from the digital backend processor is fed into the device at TPOS/TNEG and is passed through "as is". If TPD is asserted Low the transmitter remains powered down and the TTIP/TRNG outputs are held in a High-Z state. This feature allows use of the LXT335 in fully redundant applications.

Each output driver is supplied by a separate power supply (TVCC0 to TVCC3, TGND0 to TGND3). Current limiters on the output drivers provide short circuit protection and generate a driver failure monitoring signal in case the current limit is exceeded.

The transmitted pulse shape must be generated externally. Pulses are applied to the line drivers for transmission onto the line at TTIP and TRING. The line driver provides a constant low output impedance of $< 3 \Omega$ (typical) regardless of whether it is driving marks or spaces or during transitions. LXT335 provides programmable pulse amplitude output voltages.

If MODE is asserted High, the LXT335 is configured for matched line driver applications. In conjunction with external series resistors a well controlled driver output impedance provides excellent transmit return loss exceeding ETSI ETS300166 and Swiss PTT recommendations. If MODE is asserted Low, the LXT335 is configured for unmatched low power line driver applications where it drives a transformer without series resistors.

Asserting CNTL High and MODE Low, configures the LXT335 for 120 Ω loads. Asserting CNTL High and MODE High configures the LXT335 for 75 Ω loads. In transformer coupled applications the LXT335 produces 2.048 MHz pulses for both 75 Ω coaxial (2.37 V) and 120 Ω shielded twisted-pair (3.0 V) lines. Different transformer and resistor combinations are used for optimum transmit return loss performance. Internal circuitry stabilizes the output pulse amplitudes against supply variations and references them to an on-chip bandgap voltage reference.

Certain applications require common 1:2 transformers for the transmitter and receiver and software switchable $75/120 \Omega$ operation while maintaining return loss in compliance with ETS300166. The LXT335 can be used with 25Ω transmit series resistors for both 75Ω and 120Ω operation (Figure 9).

2.2.1 Driver Failure Monitor

All transceiver incorporate internal Driver Failure Monitors (DFM) in parallel with TTIP and TRING. A capacitor, charged via a measure of the driver output current and discharged by a measure of the maximum allowable current, is used to detect driver failures. Shorted lines draw excess current, overcharging the cap. When the capacitor charge deviates outside the nominal charge window for one of the 4 drivers, the common DFM output pin reports a driver short circuit fail. The individual driver failure monitor output takes precedence and overwrites the transceiver specific LOS output. During a long string of spaces, a short-induced overcharge eventually bleeds off, clearing the DFM flag.

2.2.2 Line Protection

In the receive side, the 1 k Ω series resistors protect the receiver against current surges coupled into the device. Due to the high receiver impedance (40 k Ω typ.) the resistors do not affect the receiver sensitivity. In the transmit side, the Schottky diodes D1-D4 protect the output driver. While not mandatory for normal operation, these protection elements are strongly recommended to improve the design robustness.

intel

2.3 Diagnostic Mode Of Operation

2.3.1 Loopback

All LOOP*x* pins are identical. If this pin is asserted High, Local Analog Loopback is selected which causes LXT335 to ignore data received on RTIP and RRING and loop data internally from TTIP and TRING back to the receive inputs. If this pin is asserted Low, Remote Loopback is selected which causes LXT335 to ignore data on NMARK and PMARK and to loop internally data received on RTIP and RRING to TTIP and TRING. If this pin is left open or unconnected normal operation mode is selected.

3.0 Application Information

Figure 3. Low Power Transmit Interface for Coax Cables

Figure 4. Transmit Interface for Coax Cables

Figure 5. Low Power Transmit Interface for Twisted Pair Lines

Figure 6. Transmit Interface for Twisted Pair Lines

Figure 7. Receive Interface for Twisted Pair Lines

Figure 8. Receive Interface for Twisted-Pair Lines

Manufacturer	Тга	Receive side (1:1 Ratio)			
	Part Number	Transformer Turns Ratio	Туре		
	PE-65586	1:1.36	Quad		
	PE-65766	1:1.266	Dual		
	PE-68789	1:1.5	Dual		
Pulse	PE-65762	1:1.36	Dual		
Engineering	PE-65861	1:2	Dual		
	PE-65861	1:1	Dual		
	PE-68789	1:1.185	Single		
	PE-65389	1.266:1	Single		
	TG27-1505NX	1:1.36	Octal		
HALO	TD64-1205D	1:1.26	Dual		
	TG29-1205NX	1:2	Octal		
Pol Euro	0553-0013	1:1.36	Dual		
Dei-Fuse	5006-1C	1:2	Dual		
Schott Corp	chott Corp 67129300 1:2		Single		
Valor	ST 5078	1:1.36	Dual		
Valui	ST 5028	1:2	Dual		

Table 1. Transformer Selection Guide¹

1. As of the publication date, Intel has tested the transformers listed in this table. However, part numbers and specifications change without notice. Design engineers should validate components before committing to their use.

Table 2. Transmit Transformer and Resistor Combinations

Transformer	Resistor	Return Loss ¹	CNTL1	MODE1	Impedance			
1.266:1	0 Ω	< 1 dB	Low	Low	75 Ω			
1:1	0 Ω	< 1 dB	< 1 dB Low		120 Ω			
1:1.185	26.1 Ω	20 dB	Low	High	75 Ω			
1:1.5	26.1 Ω	20 dB	Low	High	120 Ω			
1:1.36	25 Ω	18 dB	Low	High	75 Ω			
1:1.36	25 Ω	18 dB	Low	High	120 Ω			
1:2	15 Ω	≥ 8 dB	High	High	75 Ω			
1:2	15 Ω	≥ 8 dB	High	Low	120 Ω			
1. Typical values 51 kHz - 3.078 MHz								

inte

intel

Figure 9. E1 120 Ω and 75 Ω Matched Line Applications

4.0 Test Specifications

Note: The minimum and maximum values in Table 3 through Table 8 and Figure 10 and Figure 11 are performance specifications of the LXT335 and are guaranteed by test except, where noted, by design.

Table 3. Absolute Maximum Ratings

Parameter	Sym	Min.	Max.	Unit
DC supply voltage	Vcc, GND	-0.3	6.0	V
Input voltage on any pin ¹	Vin	GND-0.3	RVcc + 0.3	V
Input voltage on RTIP, RRING	Vin	-6	RVcc + 0.3	V
Transient latchup current on any pin ²	lin	-	100	mA
Input current on any digital pin ³	lin	-10	10	mA
DC input current on TTIP, TRING ³	lin	-	±100	mA
DC input current on RTIP, RRING ³	lin	-	±20	mA
Storage temperature	TSTOR	-65	+150	°C
Total package power dissipation	-	-	1	W

Caution: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum ratings conditions for external periods may affect device reliability.

1. Reference to ground.

2. Exceeding these values will cause SCR latchup.

3. Constant input current.

Table 4. Recommended Operating Conditions

Parameter	Sym	Min	Тур	Мах	Units	Test Condition	
DC supply voltage ¹	Vcc	4.75	5.0	5.25	V		
Ambient operating temperature	TA	-40	+25	+85	°C		
1. TVcc must not exceed RVcc BY 0.3 V							

Table 5. DC Characteristics (over recommended range)

	Parameter	Sym	Min	Typ ¹	Max	Unit	Test Condition
Digital I/O pins	High-level input voltage	Vін	2.0	-	-	V	
	Low-level input voltage	VIL	_	-	0.8	V	
	High-level output voltage ²	Vон	3.5	-	-	V	Ιουτ= -400μΑ
	Low-level output voltage ²	Vol	_	-	0.4	V	IOUT= 1.6 mA
Input leakage current (digital input pins)		lı∟	-10	-	+10	μA	

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Output Drivers will output CMOS logic levels into CMOS loads.

3. 100% 1s density. Power dissipation including device load while driving a matched line over the operating temperature range. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50 pF load.

4. 50% 1s density. Power dissipation including device load while driving a line without matching resistors over the operating temperature range. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50 pF load.

5. Applies to the following pins: 9, 12, 13, 16, 33, 36, 37, 40, 49-54, 59-64.

Parameter		Sym	Min	Typ ¹	Max	Unit	Test Condition
Tristate leakage curr	ent ⁵	Iнz	-10		+10	μA	
Driver short circuit current		-	_	-	50	mA	See Figure 4 and Figure 6
	Low-level input voltage	VINL	-	-	1.5	V	
	High-level input voltage	Vinh	3.5	-	-	V]
MODE input pins	Mid-range input voltage	VINM	2.3	2.5	2.7	V	pins 17, 55, 56, 57, 58
	Low-level input current	linl	-	-	50	μA	
	High-level input current	linh	-	-	50	μA]
Total power	75 Ω system (MODE=H)	PD	-	660	750	mW	Figure 4
dissipation ³	120 Ω system (MODE=H)	PD	-	660	750	mW	Figure 6
Total power dissipation ⁴	75 Ω system (MODE=L)	PD	-	410	470	mW	Figure 3
	120 Ω system (MODE=L)	PD	-	410	470	mW	Figure 5
Power down current		Icco	-	-	10	mA	

Table 5. DC Characteristics (over recommended range) (Continued)

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Output Drivers will output CMOS logic levels into CMOS loads.

 3. 100% 1s density. Power dissipation including device load while driving a matched line over the operating temperature range. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50 pF load.

4. 50% 1s density. Power dissipation including device load while driving a line without matching resistors over the operating temperature range. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50 pF load.

5. Applies to the following pins: 9, 12, 13, 16, 33, 36, 37, 40, 49-54, 59-64.

Table 6. Receive Characteristics

Parameter		Sym	Min	Тур	Max	Units	Test Condition	
Dermissible apple attenuation		-	500	-	-	mV		
Fermissible cable a		_	-	-	12	dB	@1024 kHz	
Receiver dynamic	range	DR	0.5	-	4.2	VP		
Signal to noise inte	rference margin ¹	S/I	-15	-	-	dB	per G.703, O.151	
Signal to single tone interference margin		S/X	-14	-	-	dB	O.151	
PMARK / NMARK output Jitter		-	-	0.01	-	U.I.	peak to peak	
Slicer ratio		SRE	43	50	57	%	rel. to peak input voltage	
Analog loss of sign	al threshold	-	22	-	-	dB		
Loss of signal three	shold	-	-	1	-	dB		
Receiver input impedance		-	-	40	-	kΩ	@ 1.024 kHz, RTIP to RRING	
	51 kHz – 102 kHz	-	20	-	-	dB	measured against	
Input return loss ²	102 – 2048 kHz	-	20	-	-	dB	nominal impedance, Figure 7,	
	2048 kHz – 3072 kHz	_	20	-	-	dB	rigure 8.	
1. No errors aboli acour when the combined signal attenuated by the maximum aposition interconning cable less is applied to								

1. No errors shall occur when the combined signal attenuated by the maximum specified interconnting cable loss is applied to the input port. See ITU 0.151 recommendation for further details.

2. Guaranteed by design and other correlation factors.

Table 7. Transmit Timing Characteristics

Parameter	Sym	Min	Тур	Мах	Unit	Test Condition
Transmit data rate	-	-	2.048	-	Mbps	
Transmit data tolerance	-	-50	-	50	ppm	
Output pulse width	tPW	-	244	-	ns	

Table 8. Receive Timing Characteristics (See Figure 10)

Parameter	Sym	Min	Тур	Max	Units	Test Condition
PMARK/NMARK pulse width	tMPW	200	244	300	ns	
Receiver throughput delay	tRXD	-	65	-	ns	
Receive data rate tolerance	-	-	±80	-	ppm	
Receive data to receive clock delay time	-	-	5	-	ns	

Figure 10. Receive Timing Specifications

5.0 Mechanical Specifications

Figure 12. Package Specifications