

512K CMOS UV EPROM - OTP ROM

- VERY FAST ACCESS TIME: 100 ns.
- COMPATIBLE WITH HIGH SPEED MICRO-PROCESSORS, ZERO WAIT STATE.
- LOW POWER "CMOS" CONSUMPTION:
 - Operating current 30mA
 - Stand by current 200µA.
- PROGRAMMING VOLTAGE 12.75V.
- ELECTRONIC SIGNATURE FOR AUTOMATED PROGRAMMING.
- PROGRAMMING TIMES OF AROUND 6 SEC-ONDS (PRESTO IIB ALGORITHM).

DESCRIPTION

The M27C512 is a high speed 524,288 bit ultraviolet erasable and reprogrammable EPROM ideally suited for applications where fast turnaround and pattern experimentation are important requirements.

It is housed in a 28 pin Ceramic Frit Seal Window package. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure.

In order to meet production requirements (cost effective solution or SMD), this product is also offered in plastic packages, either Plastic DIP, SO or PLCC, for One Time Programming only.

PIN FUNCTIONS

A0-A15	ADDRESS INPUT
CE	CHIP ENABLE
OE / V _{PP}	OUTPUT ENABLE / VPP
O0-O7	DATA INPUT/OUTPUT
Vcc	+ 5V POWER SUPPLY
GND	GROUND
DU	DON'T USE
NC	NO CONNECTION

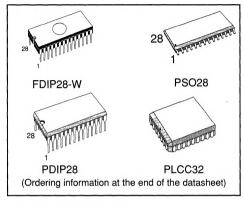


Figure 1: Pin Connection

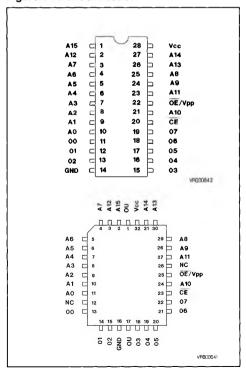
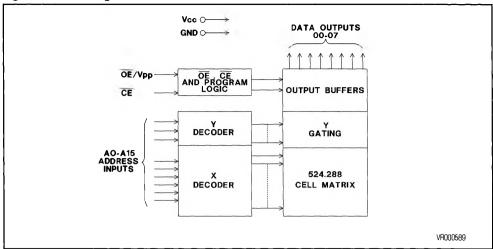



Figure 2 : Block Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vı	Input or Output voltages with respect to ground	-0.6 to +7.0	V
V _{PP}	Supply voltage with respect to ground	-0.6 to +14.0	V
V _{A9}	Voltage on A9 with respect to ground	-0.6 to +13.5	V
Vcc	Supply voltage with respect to ground	-0.6 to +7.0	V
T _{bias}	Temperature range under bias	-50 to +125	°C
T _{stg}	Storage temperature range	-65 to +150	,c

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING MODES

MODE	CE	OE / VPP	A9	OUTPUT
READ	L	L	Х	Dout
OUTPUT DISABLE	L	Н	Х	HIGH Z
STANDBY	Н	х	Х	HIGH Z
PROGRAM	L	V _{PP}	Х	DIN
PROGRAM INHIBIT	Н	V _{PP}	X	HIGH Z
ELECTRONIC SIGNATURE	L	L	V _H	CODE

NOTE : X = Don't care ; $V_H = 12V \pm 0.5V$; H = High ; L = Low.

READ OPERATION DC AND AC CONDITIONS

SELECTION CODE	F1	F6	F 7	F3
Operating Temperature Range	0 to 70°C	-40 to 85°C	-40 to 105°C	-40 to 125°C
SELECTION CODE (Example for 0°C to 70°C Oper. Temp. Range)		-10XF1, 12XF1, 15XF1, 20XF1, 25XF1		,20F1, 25F1
V _{CC} Power Supply	5V ± 5%		5V ±	10%

DC AND OPERATIONG CHARACTERISTICS (F1 AND F6 DEVICES)

Symbol	Parameter	Test Condition	Val	Unit		
Oyiiiboi	Parameter	rest Condition	Min	Max	Jill	
lu	Input Leakage Current	V _{IN} = 0V to V _{CC}	-10	10	μА	
lLO	Output Leakage Current	V _{OUT} = 0V to V _{CC}	-10	10	μА	
lcc1	V _{CC} Active Current	$CE = OE = V_{iL}$ $I_{OUT} = 0$ mA $(F = 5MHz)$		30	mA	
lcc2	V _{CC} Standby Current - TTL	CE = V _{IH}		1	mA	
Icc3 (4)	V _{CC} Standby Current - CMOS	CE > V _{CC} - 0.2V		200	μΑ	
I _{PP1}	V _{PP} Read Current	V _{PP} = V _{CC}		10	μΑ	
V _{IL}	Input Low Voltage		-0.3	+0.8	٧	
VIH	Input High Voltage		2.0	V _{CC} +1.0	٧	
Vol	Output Low Voltage	I _{OL} = 2.1 mA		0.4	٧	
V _{OH}	Output High Voltage	I _{OH} = -400 μA I _{OH} = -100 μA	2.4 V _{CC} -0.7		٧	

AC CHARACTERISTICS

				27C512									
Symbol	Parameter	Test Condition	-10			12	-15		-20		-25		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max]
tacc	Address to Output Delay	CE = OE = V _{IL}		100		120		150		200		250	ns
tce	CE to Output Delay	OE = V _{IL}		100		120		150		200		250	ns
toE	OE to Output Delay	CE = VIL		40		50		60		70		100	ns
t _{DF} (2)	OE High to Output Float	CE = V _{IL}	0	30	0	40	0	50	0	60	0	60	ns
tон	Output Hold from Address	CE= OE=VIL	0		0		0		0		0		ns

CAPACITANCE(3)

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
CiN	Input Capacitance	V _{IN} = 0V		4	6	pF
Cout	Output Capacitance	V _{OUT} = 0V		8	12	pF

NOTES: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

This parameter is only sampled and not 100 % tested. Output Float is defined as the point where data is no longer driven (see timing diagram).

3. This parameter is only sampled and not 100 % tested.

4. From date code 9112.

AC TEST CONDITIONS

Input Rise and Fall Times : ≤ 20 ns

Input Pulse Levels · 0.45 to 2.4V Timing Measurement Reference Levels: Inputs: 0.8 and 2V - Outputs: 0.8 and 2V

Figure 3: AC Testing Input/Output Waveform

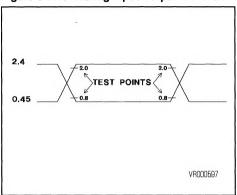


Figure 4: AC Testing Load Circuit

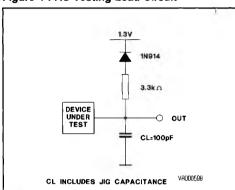
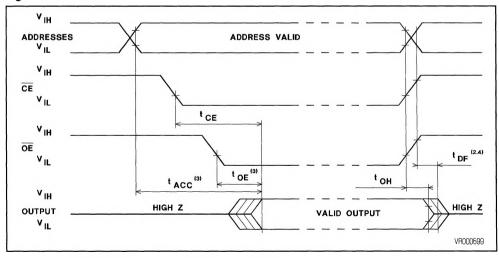



Figure 5 : AC Waveforms

NOTES: 1. Typical values are for T_A = 25°C and nominal supply voltage.

This parameter is only sampled and not 100 % tested.

OE may be delayed up to toe toe after the falling edge CE without impact on toe.
 top is specified from OE or CE whichever occurs first.

DEVICE OPERATION

The modes of operations of the M27C512 are listed in the Operating Modes table. A single 5V power supply is required in the <u>read</u> mode. All inputs are TTL levels except for OE/V_{PP} and 12V on A9 for Electronic Signature.

READ MODE

The M27C512 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE/Vpp) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time (tacc) is equal to the delay from CE to output (tce). Data is available at the output after a delay of toe from the falling edge of OE, assuming that CE has been low and the addresses have been stable for at least tacc-toe.

STANDBY MODE

The M27C512 has a standby mode which reduces the active current from 30mA to 0.2mA (from date code 9104). The M27C512 is placed in the standby mode by applying a CMOS high signal to the CE input. When in the standby mode, the outputs are in a high impedance state, independent of the OE/V_{PP} input.

TWO LINE OUTPUT CONTROL

Because EPROMs are usually used in larger memory arrays, the product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:

- a) the lowest possible memory power dissipation,
 b) complete assurance that output bus contention will not occur.
- For the most efficient use of these two control lines, CE should be decoded and used <u>as</u> the primary device selecting function, while OE/Vpp should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.

SYSTEM CONSIDERATIONS

The power switching characteristics of CMOS-E4 EPROMs require careful decoupling of the devices. The supply current, Icc, has three seg-

ments that are of interest to the system designer: the standby current level, the active current level. and transient current peaks that are produced by the falling and rising edges of CE. The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device at the output. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 1µF ceramic capacitor be used on every device between Vcc and GND. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7µF bulk electrolytic capacitor should be used between Vcc and GND for every eight devices. The bulk capacitor should be located near the power supplyconnection point. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

PROGRAMMING

Caution: exceeding 14V on OE/Vpp pin will permanently damage the M27C512.

When delivered (and after each erasure for UV EPROM), all bits of the M27C512 are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" will be programmed, both "1s" and "0s" can be present in the data word. The only way to change a "0" to a "1" is by die exposure to ultraviolet light (UV EPROM). M27C512 is in the programming mode when VPP input is at 12.75V and CE is at TTL-low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. The M27C512 can use PRESTO IIB Programming Algorithm that drastically reduces the programming time (typically less than 6 seconds). Nevertheless to achieve compatibility with all programming equipments, PRESTO Programming Algorithm can be used as well.

PRESTO IIB PROGRAMMING ALGORITHM

PRESTO IIB Programming Algorithm allows the whole array to be programmed with a guaranteed margin, in a typical time of less than 6 seconds. This can be achieved with SGS-THOMSON M27C512 due to several design innovations described in the M27C512 datasheet to improve programming efficiency and to provide adequate margin for reliability. Before starting the programming the internal MARGIN MODE circuit is set in order to guarantee that each cell is pro-

grammed with enough margin. Then a sequence of 100 microsecond program pulses are applied to each byte until a correct verify occurs. No overprogram pulses are applied since the verify in MARGIN MODE provides the necessary margin.

PROGRAM INHIBIT

Programming of multiple M27C512s in parallel with different data is also easily accomplished. Except for CE, all like inputs including OE/Vpp of the parallel M27C512 may be common. A TTL low level pulse applied to a M27C512's CE input, with OE/Vpp at 12.75V, will program that M27C512. A high level CE input inhibits the other M27C512s from being programmed. Vcc is specified to be 6.25V ± 0.25V.

PROGRAM VERIFY

A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with OE/V_{PP} at V_{IL} . Data should be verified with tpv after the following edge of CE.

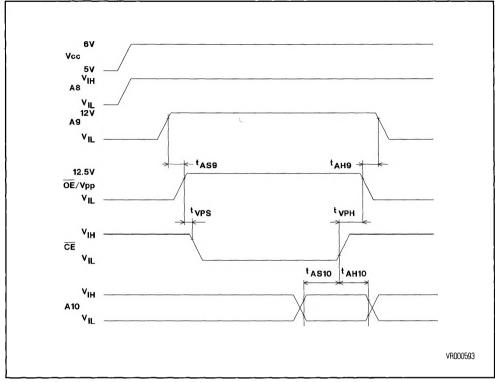
ELECTRONIC SIGNATURE

The Electronic Signature mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. This mode is functional in the 25°C ± 5°C ambient temperature range that is required when programming the M27C512. To activate this mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27C512. Two identifier bytes may then be sequenced from the device outputs by togqling ad-

dress line A0 from V_{IL} to V_{IH} . All other address lines must be held at V_{IL} during Electronic Signature mode. Byte 0 (A0= V_{IL}) represents the manufacturer code and byte 1 (A0= V_{IH}) the device identifier code. For the SGS-THOMSON M27C512, these two identifier bytes are given here below, and can be read-out on outputs O0 to O7.

ERASURE OPERATION (applies for UV EPROM)

The erasure characteristics of the M27C512 is such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 Angstrom. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å range. Research shows that constant exposure to room level fluorescent lighting could erase a typical M27C512 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27C512 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27C512 window to prevent unintentional erasure. The recommended erasure procedure for the M27C512 is exposure to short wave ultraviolet light which has wavelength 2537 Å. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 15 W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 μW/cm² power rating. The M27C512 should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure.


ELECTRONIC SIGNATURE MODE

IDENTIFIER					PII	NS				
	A 0	07	O6	O 5	04	О3	02	01	00	Hex
MANUFACTURER CODE	VIL	0	0	1	0	0	0	0	0	20
DEVICE CODE	ViH	0	0	1	1	1	1	0	1	3D

NOTE : A9 = 12V \pm 0.5V ; $\overline{\text{CE}}$ = $\overline{\text{OE}/\text{V}_{PP}}$ = V_{IL} ; A1 to A8 = A10 to A15 = V_{IL}

DEVICE OPERATION (Continued)

Figure 6: MARGIN MODE Set and Reset Waveforms

NOTES: 1. Other addresses are don't care.

2. Set MARGIN MODE A10 = VIH, Reset MARGIN MODE A10 = VIL.

MARGIN MODE AC CHARACTERISTICS

Symbol	Parameter	Test Condition	Val	Unit	
Symbol		rest Condition	Min	Max	
t _{AS10}	A10 Setup Time		1		μs
t _{AH10}	A10 Hold Time		1		μs
tvph	V _{PP} Hold Time		2		μs
tvps	V _{PP} Setup Time		2		μs
t _{AS9}	A9 Setup Time		2		μs
t _{AH9}	A9 Hold Time		2		μs

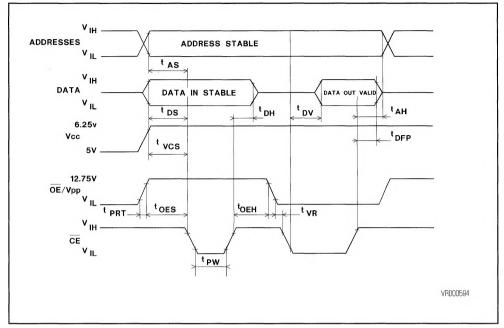
PROGRAMMING OPERATION

 $(T_A = 25^{\circ}C \pm 5^{\circ}C, V_{CC})^{(1)} = 6.25V \pm 0.25V, V_{PP})^{(1)} = 12.75V \pm 0.25V)$

DC AND OPERATING CHARACTERISTICS

Symbol	Parameter	Test Condition	Va	lues	Unit
Syllibol	Parameter	(see Note 1)	Min	Max.	Ollit
ILI	Input Current (All Inputs)	VIN = VIL OF VIH		10	μА
VIL	Input Low Level (All Inputs)		-0.1	0.8	٧
V _{IH}	Input High Level		2.4	V _{CC} +0.5	٧
V _{OL}	Output Low Voltage During Verify	I _{OL} = 2.1 mA		0.45	٧
V _{OH}	Output High Voltage During Verify	I _{OH} = - 400 μA	2.4		٧
I _{CC2}	V _{CC} Supply Current			50	mA
I _{PP2}	V _{PP} Supply Current (Program)	CE = V _{IL}		50	mA
V _{ID}	A9 Electronic Signature Voltage		11.5	12.5	٧

AC CHARACTERISTICS


Symbol	Parameter	Test Condition	Val	ues	Unit
Syllibol	Parameter	(see Note 1)	Min	Max	Oill
tas	Address Setup Time		2		μѕ
toes	OE Setup Time		2		μs
toen	OE/V _{PP} Hold Time		2		μs
t _{DS}	Data Setup Time		2		μs
tah	Address Hold Time		0		μs
tрн	Data Hold Time		2		μs
t _{DFP} (2)	Chip Enable Output Float Delay		0	130	ns
tvcs	V _{CC} Setup Time		0		μs
tpw	CE Initial Program Pulse Width		95	105	μs
t _{DV}	Data Valid from CE			1	ns
t _{VR}	OE/V _{PP} Recovery Time		2		μs
tert	OE/V _{PP} Pulse Rise Time During Programming		50		ns

NOTES: 1. Vcc must be applied simultaneously or before OE/VPP and removed simultaneously or after OE/VPP.

2. This parameter is only sampled and not 100 % tested.

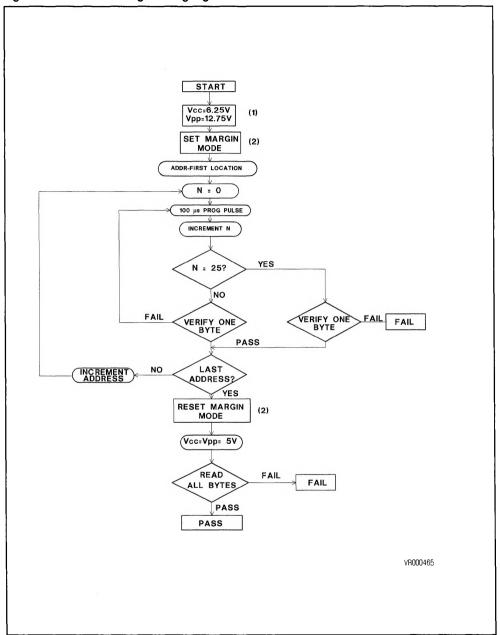
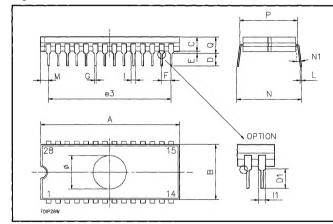

Output Float is defined as the point where data is no longer driven (see timing diagram).

Figure 7: Programming Waveforms

NOTES : 1. The input timing reference level is 0.8V for a V_{IL} and 2V for V_{IH} . 2. t_{OE} and t_{OFP} are characteristics of the device but must be accommodated by the programmer.

Figure 8: PRESTO IIB Programming Algorithm Flow Chart


ORDERING INFORMATION (UV EPROM)

Part Number	Access Time	Supply Voltage	Temp. Range	Package
M27C512-10XF1	100 ns	5V ± 5%	0°C to +70°C	FDIP28-W
M27C512-12XF1	120 ns	5V ± 5%	0°C to +70°C	FDIP28-W
M27C512-15XF1	150 ns	5V ± 5%	0°C to +70°C	FDIP28-W
M27C512-20XF1	200 ns	5V ± 5%	0°C to +70°C	FDIP28-W
M27C512-25XF1	250 ns	5V ± 5%	0°C to +70°C	FDIP28-W
M27C512-12F1	120 ns	5V ± 10%	0°C to +70°C	FDIP28-W
M27C512-15F1	150 ns	5V ± 10%	0°C to +70°C	FDIP28-W
M27C512-20F1	200 ns	5V ± 10%	0°C to +70°C	FDIP28-W
M27C512-25F1	250 ns	5V ± 10%	0°C to +70°C	FDIP28-W
M27C512-15XF6	150 ns	5V ± 5%	-40°C to +85°C	FDIP28-W
M27C512-15XF7	150 ns	5V ± 5%	-40°C to +105°C	FDIP28-W
M27C512-15XF3	150 ns	5V ± 5%	-40°C to +125°C	FDIP28-W

NOTE: Consult your nearest SGS-THOMSON sales office for availability of other combinations.

PACKAGE MECHANICAL DATA - UV EPROM

Figure 9: 28-PIN WINDOW CERAMIC DUAL IN LINE FRIT-SEAL

Dim.	mm			inches		
	Min	Тур	Max	Min	Тур	Max
Α			38.10			1.500
В	13.05		13.36	0.514		0.526
С	3.90		5.08	0.154		0.199
D	3.00			0.118		
Е	0.50		1.78	0.020		0.070
e 3		33.02			1.300	
F	2.29		2.79	0.090		0.110
G	0.40		0.55	0.016		0.027
1	1.17		1.42	0.046		0.056
L	0.22		0.31	0.009		0.012
М	1.52		2.49	0.060		0.098
N						
N1	0,		10*	0.		10°
Р	15.40		15.80	0.606		0.622
a			5.71			0.225
Ø	7.35		7.90	0.290		0.311

ORDERING INFORMATION (OTP ROM)

Part Number	Access Time	Supply Voltage	Temp. Range	Package
M27C512-15XB1	150 ns	5V ± 5%	0°C to +70°C	PDIP28
M27C512-20B1	200 ns	5V ± 10%	0°C to +70°C	PDIP28
M27C512-15XB6	150 ns	5V ± 5%	-40°C to +85°C	PDIP28
M27C512-15XC1	150 ns	5V ± 5%	0°C to +70°C	PLCC32
M27C512-20C1	200 ns	5V ± 10%	0°C to +70°C	PLCC32
M27C512-15XC6	150 ns	5V ± 5%	-40°C to +85°C	PLCC32
M27C512-15XM1	150 ns	5V ± 5%	0°C to +70°C	SO28
M27C512-20M1	200 ns	5V ± 10%	0°C to +70°C	SO28

NOTE: Consult your nearest SGS-THOMSON sales office for availability of other combinations.

PACKAGE MECHANICAL DATA - OTP ROM

Figure 10 : 28-PIN PLASTIC DIP

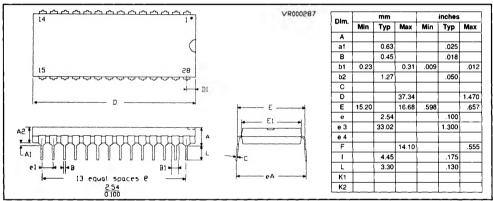


Figure 11: 32-LEAD PLASTIC LEADED CHIP CARRIER

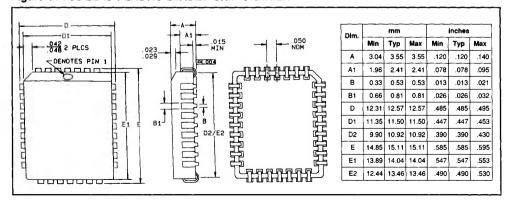
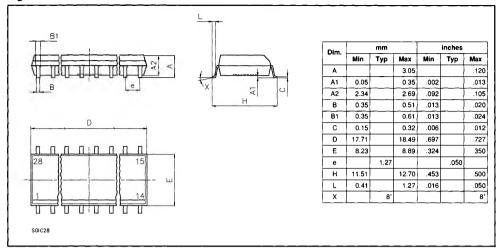



Figure 12: SOIC28-28-LEAD SMALL OUTLINE PACKAGE

