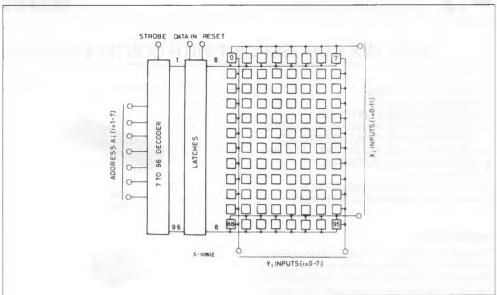


CMOS 12 X 8 CROSSPOINT WITH CONTROL MEMORY

- LOW ON RESISTANCE (typ. 40 Ω at V_{DD} = 10 V)
- INTERNAL CONTROL LATCHES
- ANALOG SIGNAL SWING CAPABILITY EQUAL TO POWER SUPPLY VOLTAGE APPLIED
- LESS THAN 1 % TOTAL DISTORT. AT 0 dBm
- LESS THAN 95 dB CROSS-TALK AT 1 KHz 1 VPP
- VERY LOW POWER CONSUMPTION
- PIN-TO-PIN COMPATIBLE WITH M093

DESCRIPTION

The M3493 contains a 12×8 array of crosspoint together with a 7 to 96 line decoder and latch circuits. Anyone of the 96 switches can be addressed by selecting the appropriate 7 input bits. The selected switch can be turned on or off by applying a logical one or zero to the data in and the strobe input at logical one. A reset signal can be used to turn off all the switches together when is switched at logical one.


M3493 is available in 40 lead dual in-line plastic, or 44 lead plastic chip carrier packages.

DIP40 (Plastic) DIC44 PLC44 DIC44 DIC44

PIN CONNECTIONS (top view)

		CHIP CARRIER
Y3 [1	400 V00	
AVZ Z	39 YZ	
RESET 0 3	38 DATA	
AX3 C 4	37 Q Y1	446. 446. 446. 446. 460. 460. 460. 461. 461. 461. 461. 461. 461. 461. 461
AXO 0 5	360 NC	
NC C 6	35 D VO	6 5 4 3 2 1 44 43 42 41 40
NC C 7	34] NC	N.C. 7 39 7 N.C. 8 38 7
x6 [8	33 XO	x6 9 37 D
х7 [9	32 X 1	X7 0 10 36 0
x8 [10	31 X2	X8 [1] 35]
X9 [11	30D X3	X9 12 34 P
X10 C 12	290 X4	X10 13 33 X11 14 32
X11 [13	280 X5	N.C. 015 31 D
NC 14	270 NC	N.C. 016 30
¥7 015	26] NC	N.C. 17 29
NC 016	25 AY1	18 19 20 21 22 23 24 25 26 27 28
¥6 017	24 D AYO	V V V V V V V V V V V V V V V V V V V
STROBE 18	23 D AX2	47 45 45 45 45 441 441 441 441 441 441 441
V5 [19	22 AX1	0
VSS 0 20	21D Y4	
	5-6248	

BLOCK DIAGRAM

INPUT/OUTPUT DESCRIPTION

POWER

I/O	Symbol	Pin	Description
1	V _{DD}	40	Positive Power Supply
1	Vss	20	Negative Power Supply

ADDRESS

I/O	Symbol	Pin	Description
I	AX0-AX3	4, 5, 22, 23	X Address Lines. These 4 pins are used to select one of the 16 rows of switches. Refer to the truth table for legal address.
I	AY0-AY2	2, 24, 25	Y Address Lines. These 3 pins are used to select one of the 8 columns of switches. Refer to the truth table for legal address.

CONTROL

I/O	Symbol	Pin	Description
1	DATA	38	This input determines if the selected switch will be turned on (closed) or off (opened). If the pin is held high, the selected switch will be closed. If the pin is held low, the switch will be opened.
1	STROBE	18	This pin enables whatever action is selected by the ADDRESS and DATA pins. When the STROBE pin is held low, no switch openings or closings take place. When the STROBE pin is held high, the switch addressed by the select lines will be opened or closed (depending upon the state of the DATA pin)
1	RESET	3	Master Reset. This pin turns off (opens) all 128 switches. The states of the above control lines are irrelevant. This pin is active high.

DATA

1/0	Symbol	Pin	Description
I/O	X0-X11	8-13, 28-33	Analog Input/Outputs. These pins are connected to the Y0-Y7 pins in according to the truth table.
1/0	Y0-Y7	1,15,17,19,21 35,37,39	Analog Input/Outputs. These pins are connected to the X0-X15 pins in according to the truth table.

TRUTH TABLE

Address							
AX0	AX1	AX2	AX3	AY0	AY1	AY2	Connections
0	0	0	0	0	0	0	X0 - Y0
1	0	0	0	0	0	0	X1 - Y0
0	1	0	0	0	0	0	X2 - Y0
1	1	0	0	0	0	0	X3 - Y0
0	0	1	0	0	0	0	X4 - Y0
1	0	1	0	0	0	0	X5 - Y0
0	1	1	0	0	0	0	No connection
1	1	1	0	0	0	0	No connection
0	0	0	1	0	0	0	X6 - Y0
1	0	0	1	0	0	0	X7 - Y0
0	1	0	1	0	0	0	X8 - Y0
1	1	0	1	0	0	0	X9 - Y0
0	0	1	1	0	0	0	X10 - Y0
1	0	1	1	0	0	0	X11 - Y0
0	1	1	1	0	0	0	No connection
1	1	1	1	0	0	0	No connection
0	0	0	0	1	0	0	X0 - Y1
\downarrow	↓	↓ ↓	\downarrow	Ļ	Ļ	\downarrow	$\downarrow \downarrow$
1	0	1	1	1	0	0	X11 - Y1
0	0	0	0	0	1	0	X0 - Y2
\downarrow	Ļ	↓	Ļ	\downarrow	Ļ	↓ ↓	$\downarrow \downarrow$
1	0	1	1	0	1	0	X11 - Y2
0	0	0	0	1	1	0	X0 - Y3
\downarrow	\downarrow	Ļ	\downarrow	\downarrow	Ļ	↓ ↓	$\downarrow \downarrow$
1	0	1	1	1	1	0	X11 - Y3
0	0	0	0	0	0	1	X0 - Y4
\downarrow	\downarrow	↓ ↓	\downarrow	\downarrow	\downarrow	\downarrow	$\downarrow \downarrow$
1	0	1	1	0	0	1	X11 - Y4
0	0	0	0	1	0	1	X0 - Y5
\downarrow	\downarrow	Ļ	\downarrow	\downarrow	Ļ	↓	$\downarrow \downarrow$
1	0	1	1	1	0	1	X11 - Y5
0	0	0	0	0	1	1	X0 - Y6
\downarrow	$\downarrow \downarrow$						
1	0	1	1	0	1	1	X11 - Y6
0	0	0	0	1	1	1	X0 - Y7
↓	Ļ	\downarrow	\downarrow	\downarrow	\downarrow	↓ ↓	$\downarrow \downarrow$
1	0	1	1	1	1	1	X11 - Y7

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	- 0.5 to 14	V
VIN	Input Voltage Range	- 0.5 to V _{DD} + 0.5	V
Ptot	Power Dissipation	1	W
Top	Operating Temperature Range	0 to 70	°C
Tstg	Storage Temperature Range	- 50 to 125	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
VDD	Supply Voltage	10	V
Top	Operating Temperature	0 to 70	°C
VIN	(logic signal)	0 to V _{DD}	

STATIC ELECTRICAL CHARACTERISTICS (T_{amb} = 0 to 70 °C, V_{DD} = 10 V)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ls	Supply Current	Reset = V _{DD}			1	mA

CROSSPOINT

Symbol	Parameter	Test Conditions	Min.	Тур.	Max. 100	Unit Ω
	On Resistance	V _{IDC} = 4.75 V V _{ODC} = 4 (see fig.		60		
	On Resistance Variation			6	10	Ω
	Off Leakage*	All switches off V _{OS} = V to V _{DD}	1S = 0		± 3	μA

CONTROLS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VIL					0.8	V
VIH			2.4			V
	Input Leakage*	$V_{IN} = 0$ to V_{DD}			± 3	μA

* The device is guaranteed with such limits up to 70°C. At 25°C these limits become ± 100nA.

DYNAMIC ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, C_L = 50 pF all input square wave rise and fall times = 10 ns, V_{DD} = 10 V)

CROSSPOINTS

	Parameter	Test Conditions							
Symbol		Note	f _q (KHz)	R _h (ΚΩ)	V _{is} (Vpp)	Min.	Тур.	Max.	Unit
t _{PHL} , t _{PLH}	Propagation Delay Time (switch ON) Signal Input to Output	Fig. 2		1	2		30	100	ns
	Frequency Response (any switch ON) 20 log (V_{OS}/V_{IS}) = - 3 dB	C _L = 3 pF		0.081	2		50		MHz
	Sine Wave Distortion		1	0.6	8			1	%
	Feed Through (any switches OFF)	Fig. 3	10	1	2	- 80			dB
	Frequency For Signal Crosstalk Attenuation of 40 dB Attenuation of 110 dB	Fig. 4		1	2	1 5			MHz KHz
	Capacitance Xn to Ground						15		
С	V _n to Ground		1000		0.1		15		рF
	Feed Through						0.4		
С	Capacitance Logic Input to Ground		1000		0.1		5		pF

DYNAMIC ELECTRICAL CHARACTERISTICS (continued)

CONTROLS

Symbol t _{PSN}	Parameter Propagation Delay Time Strobe to Output (switch turn-ON to high level)	Test Conditions			Value			
		$V_{DD} = 10 V$		See Fig.	Min.	Тур.	Max.	Unit
		$R_{L} = 1 K\Omega$ $t_{r}, t_{f} = 10 ns$	C _L = 50 pF	5		150	200	ns
tpzh	Data-in to Output (turn-ON to high level)			6		150	200	ns
tpan	Address to Output (turn-ON to high level)			7		150	200	ns
tpsf	Propagation Delay Time Strobe to Output (switch turn-OFF)			5		150	200	ns
tpzl	Data-in to Output (turn-ON to low level)			6		150	200	ns
t PAF	Address to Output (turn-OFF)			7		150	200	ns
ts	Set-UP Time Data-in to Strobe			5, 10	20			ns
t _H	Hold time Data-in to Strobe			5, 10	120			ns
to	Switching Frequency					1		MHz
tw	Strobe Pulse Width			10	100			ns
twn	Reset Pulse Width			9	150			ns
tрнz	Reset Turn-OFF to Output Delay			9		150	200	ns
tas	Address Set-UP Time Address to Strobe			10	20			ns
t _{AH}	Address Hold Time Address to Strobe		T	10	20		_	ns
	Control Crosstalk Data-in, Address, or Strobe to Output	Square Wave Input t _r , t _f = 10 ns	$V_{IN} = 3 V$ $R_L = 10 k\Omega$	8		75		mV

TEST CIRCUITS

Figure 1 : RON Measurement.

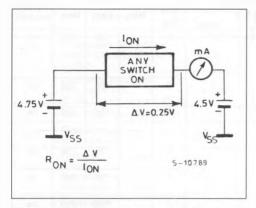


Figure 3 : Off Isolation Measurement (Feed through).

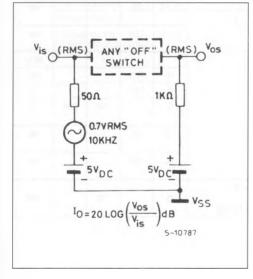
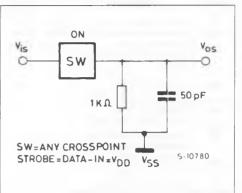
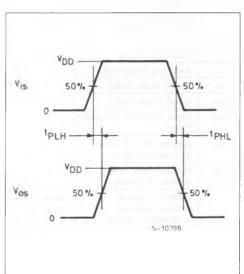




Figure 2 : Propagation Delay Time and Waveforms (signal input to signal output switch ON).

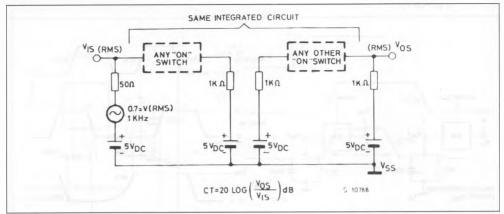


Figure 5 : Propagation Delay Time and Waveforms (strobe to signal output switch Turn-ON or Turn-OFF).

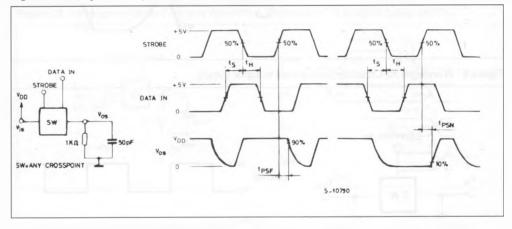
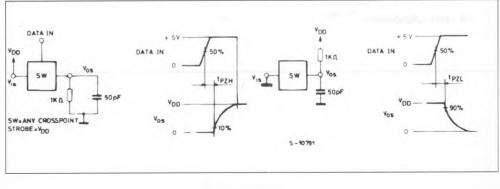



Figure 6 : Propagation Delay Time and Waveforms (data-in signal output, switch Turn-ON to high or low level).

SGS-THOMSON MICROELECTRONICS

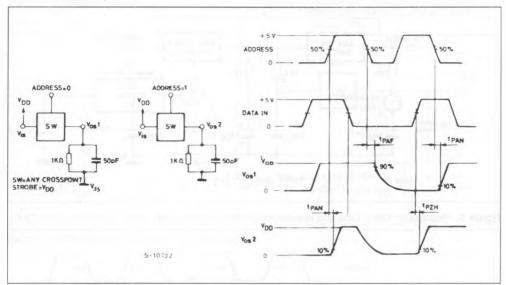
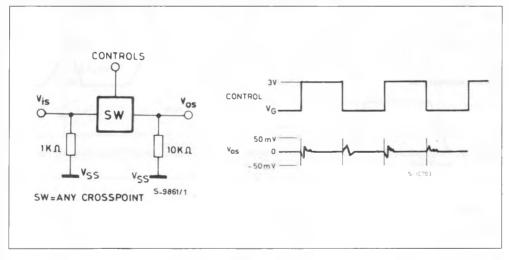



Figure 8 : Waveforms for Crosstalk (control input to signal output).

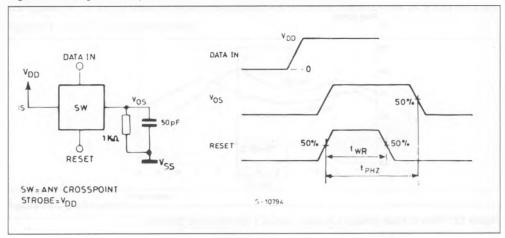


Figure 9 : Propagation Delay Time and Waveforms (reset to output delay).

Figure 10 : Propagation Delay Time and Waveforms (Strobe and C/S to signal output switch).

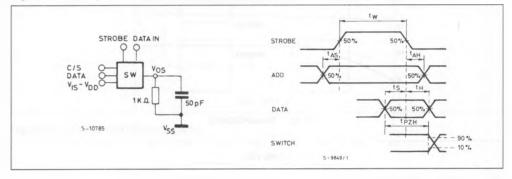


Figure 11 : Typical RON versus Vis.

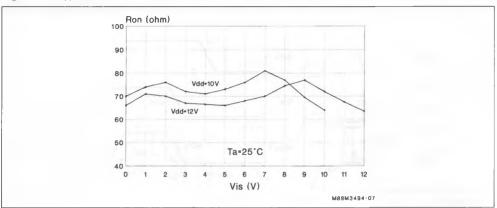
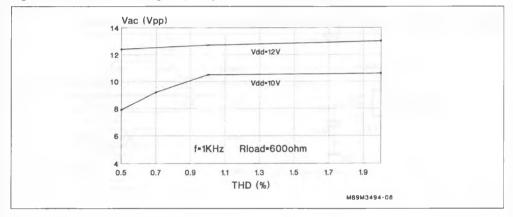
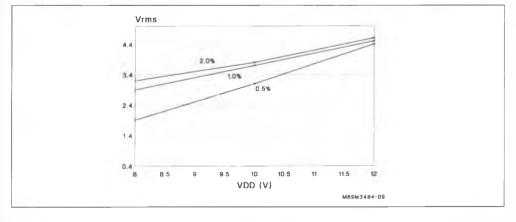
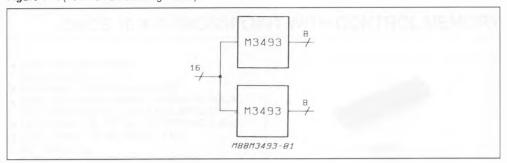
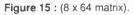


Figure 12 : Peak to Peak Voltage Capability versus Total Harmonic Distortion.


Figure 13 : V_{RMS} Capability versus V_{DD}.



TYPICAL APPLICATIONS

The figures 14, 15 and 16 show the system configuration for expanded matrices (16×16 , 8×64 , 32×32). Figure 14 : (16×16 non blocking matrix).

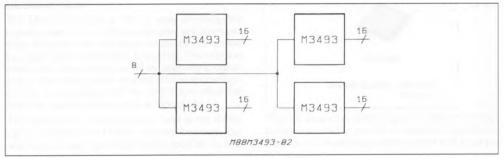
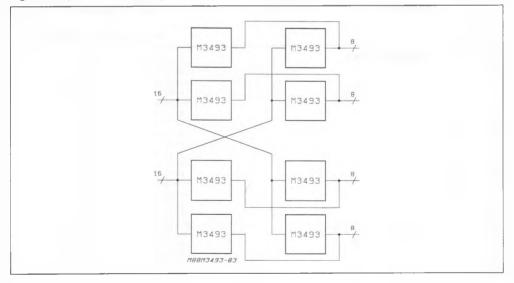



Figure 16 : (32 x 32 non blocking matrix).

