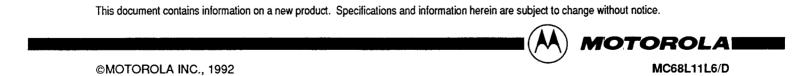
Order this document by MC68L11L6/D

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

MC68L11L6

Supplement to Technical Data Low Voltage Devices

The MC68L11L6 is an extended-voltage version of the MC68HC11L6 microcontroller that can operate in applications that require supply voltages as low as 3.0 Volts. Operation of the MC68L11L6 is identical to that of the MC68HC11L6 in all aspects other than electrical parameters.


This document provides MC68L11L6 electrical characteristics. It is a supplement to Appendix A of the *MC68HC11L6 Technical Data* (MC68HC11L6/D). Refer to the data book for technical information regarding use and operation of the microcontroller. The extended-range electrical characteristics in this supplement will be incorporated into the data book in a subsequent revision.

Features

- Suitable for Battery-Powered Portable and Hand-Held Applications
- Excellent for use in Applications such as Remote Sensors and Actuators
- Reduced RF Noise
- Operating Performance is Same at 5V and 3V

Ordering mormation					
Package	Temperature	Frequency	Features	MC Order Number	
68-Pin PLCC	0° to + 70° C	2 MHz	Custom ROM	MC68L11L6FN2	
			Custom ROM, No EEPROM	MC68L11L5FN2	
			No ROM	MC68L11L1FN2	
			No ROM, No EEPROM	MC68L11L0FN2	
64-Pin QFP	0° to + 70° C	2 MHz	Custom ROM	MC68L11L6FU2	
			Custom ROM, No EEPROM	MC68L11L5FU2	
			No ROM	MC68L11L1FU2	
			No ROM, No EEPROM	MC68L11L0FU2	

Ordering Information

SUPPLEMENT TO APPENDIX A ELECTRICAL CHARACTERISTICS: LOW VOLTAGE DEVICES

Rating	Symbol	Value	Unit
Supply Voltage	V _{DD}	- 0.3 to + 7.0	v
Input Voltage	Vin	- 0.3 to + 7.0	V
Operating Temperature Range MC68L11L6	T _A	T_L to T_H - 20 to + 70	°C
Storage Temperature Range	T _{stg}	- 55 to + 150	ç
Current Drain per Pin* Excluding V _{DD} , V _{SS} , AV _{DD} , V _{RH} , and V _{RL}	μD	25	mA

Table	A–1a.	Maximum	Ratings
-------	-------	---------	---------

*One pin at a time, observing maximum power dissipation limits.

Internal circuitry protects the inputs against damage caused by high static voltages or electric fields; however, normal precautions are necessary to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Extended operation at the maximum ratings can adversely affect device reliability. Tying unused inputs to an appropriate logic voltage level (either GND or V_{DD}) enhances reliability of operation.

Characteristic		Symbol	Value	Unit	
Average Junction Temperature		Tj	$T_A + (P_D \times \Theta_{JA})$	°C	
Ambient Temperature	······································	TA	User-determined	∞	
Package Thermal Resistance (Junction-to-Am 68-Pin Plastic Leaded Chip Carrier (PLCC) 64-Pin Quad Flat Pack (QFP)	bient)	θ _{JA} 50 85		°C/W	
Total Power Dissipation	(Note 1)	PD	P _{INT} + P _{I/O} K / (T _J + 273°C)	w	
Device Internal Power Dissipation		PINT	I _{DD} x V _{DD}	w	
I/O Pin Power Dissipation (Note 2)		P _{I/O}	User-determined	W	
A Constant	(Note 3)	к	P _D × (T _A + 273°C) + ⊖ _{JA} × P _D ²	W∙•C	

NOTES:

1. This is an approximate value, neglecting P_{I/O}.

2. For most applications PI/O « PINT and can be neglected.

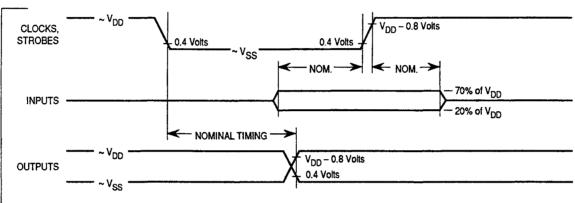
3. K is a constant pertaining to the device. Solve for K with a known T_A and a measured P_D (at equilibrium). Use this value of K to solve for P_D and T_J iteratively for any value of T_A .

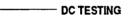
MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A-1

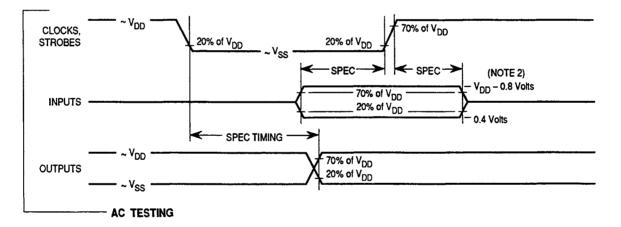
Table A-3a. DC Electrical Characteristics

 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted

Characteristic		Symbol	Min	Max	Unit
Output Voltage (Note 1) All Outputs All Outputs Except XTAL, RESE $I_{Load} = \pm 10.0 \mu A$	except XTAL T, and MODA	Vol Voh	 V _{DD} 0.1	0.1	v v
RESE $I_{Load} = -0.5 \text{mA}, V_{DD} = 3.0 \text{ V}$	Except XTAL, T, and MODA	Vон	V _{DD} – 0.8	—	v
$I_{Load} = -0.8 \text{ mA}, V_{DD} = 4.5 \text{ V}$					
	Except XTAL	VOL	Withdow	0.4	V
Input High Voltage All Inputs E	xcept RESET RESET	VIH	0.7 x V _{DD} 0.8 x V _{DD}	$\begin{array}{c} V_{DD} + 0.3\\ V_{DD} + 0.3 \end{array}$	V V
Input Low Voltage	All Inputs	VIL	V _{SS} – 0.3	0.2 x V _{DD}	V
PC[7:0], PD[5:	0], PA7, PA3, 0] <u>, AS/STRA,</u> VLIR, RESET	loz	—	±10	μA
Input Leakage Current (Note 2)		lin			· · · -
), IRQ, XIRQ	40		±1	μΑ
	MODB/VSTBY		—	±10	μA
RAM Standby Voltage	Power down	V _{SB}	2.0	V _{DD}	V
RAM Standby Current	Power down	I _{SB}	_	10	μ A
Input Capacitance PA[2:0], PE[7:0], IRQ, 2 PA7, PA3, PC[7:0], PD[AS/STRA, MODA	5:0], PG[7:0],	C _{in}		8 12	рF pF
Output Load Capacitance All Outputs Ex	xcept PD[4:1] PD[4:1]	С _L	-	90 100	рҒ pF
Characteristic	·····	Symbol	1 MHz	2 MHz	Unit
Maximum Total Supply Current (Note 3) RUN:		IDD			
Single-Chip Mode	$V_{DD} = 5.5 V$		8	15	mA
Expanded Multiplexed Mode	V _{DD} = 3.0 V V _{DD} = 5.5 V		4 14	8 27	mA mA
	$V_{DD} = 3.0 V$ $V_{DD} = 3.0 V$		7	14	mA
WAIT: (All Peripheral Functions Shut Dow	vn)	WIDD	•		
Single-Chip Mode	$V_{DD} = 5.5 V$		3 1.5	6 3	mA mA
Expanded Multiplexed Mode	V _{DD} = 3.0 V V _{DD} = 5.5 V		1.5	10	mA
	$V_{DD} = 3.0 V$		2.5	5	mA
STOP:		SIDD	50	50	
Single-Chip Mode, No Clocks	V _{DD} = 5.5 V V _{DD} = 3.0 V		50 25	50 25	μΑ μΑ
Maximum Power Dissipation		PD			F= •
Single-Chip Mode	V _{DD} = 5.5 V	- 0	44	85	mW
Europei and Multiplessed Media	$V_{DD} = 3.0 V$		12	24	mW
Expanded Multiplexed Mode	V _{DD} = 5.5 V V _{DD} = 3.0 V		77 21	150 42	mW mW


NOTES:


1. VOH specification for RESET and MODA is not applicable because they are open-drain pins. VOH specification not applicable to ports C and D in wired-OR mode.


2. Refer to A/D specification for leakage current for port E.

3. EXTAL is driven with a square wave, and $t_{cyc} = 1000$ ns for 1 MHz rating; $t_{cyc} = 500$ ns for 2 MHz rating; $V_{IL} \le 0.2$ V; $V_{IH} \ge V_{DD} - 0.2$ V; No dc loads.

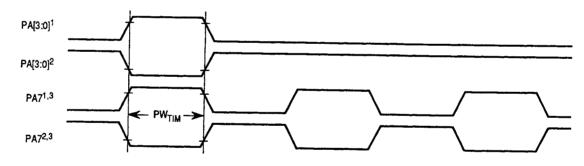
MOTOROLA SUPPLEMENT TO APPENDIX A MC68L11L6 ELECTRICAL CHARACTERISTICS TECHNICAL DATA A-2

NOTES:

 Full test loads are applied during all DC electrical tests and AC timing measurements.
 During AC timing measurements, inputs are driven to 0.4 volts and V_{DD} – 0.8 volts while timing measurements are taken at the 20% and 70% of $V_{\mbox{\scriptsize DD}}$ points.

Figure A-1. Test Methods

MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A-3


Table A-4a. Control Timing

$V_{DD} = 3.0 \text{ Vdc to } 5.0 \text{ Vdc to } 5.0$.5 Vdc. Ves	= 0 Vdc, T _A	= Ti to Tu
--	-------------	-------------------------	------------

Characteristic	Symbol	1.0	MHz	2.0	MHz	Unit
		Min	Max	Min	Max	
Frequency of Operation	fo	dc	1.0	dc	2.0	MHz
E-Clock Period	t _{cyc}	1000	-	500	—	ns
Crystal Frequency	f XTAL	_	4.0		8.0	MHz
External Oscillator Frequency	4 fo	dc	4.0	dc	8.0	MHz
Processor Control SetupTime tPCSU = 1/4 t _{cyc} + 75 ns	tPCSU	325	-	200	-	ns
Reset Input Pulse Width To Guarantee External Reset Vector Minimum Input Time (Can Be Preempted by Internal Reset)	PWRSTL	8 1	_	8 1		t _{cyc} t _{cyc}
Mode Programming Setup Time	tMPS	2	-	2	-	t _{cyc}
Mode Programming Hold Time	tMPH	10	-	10	-	ns
Interrupt Pulse Width, IRQ Edge-Sensitive Mode PW _{IRQ} = t _{cyc} + 20 ns	PWIRQ	1020	—	520	-	ns
Wait Recovery Startup Time	twrs	-	4	—	4	t _{cyc}
Timer Pulse Width, Input Capture Pulse Accumulator Input PW _{TIM} = t _{cyc} + 20 ns	PW _{TIM}	1020	-	520	-	ns

NOTES:

- 1. RESET is recognized during the first clock cycle it is held low. Internal circuitry then drives the pin low for four clock cycles, releases the pin, and samples the pin level two cycles later to determine the source of the interrupt. Refer to SECTION 5 RESETS AND INTERRUPTS for further detail.
- 2. All timing is shown with respect to 20% $V_{\mbox{DD}}$ and 70% $V_{\mbox{DD}}$, unless otherwise noted.

NOTES:

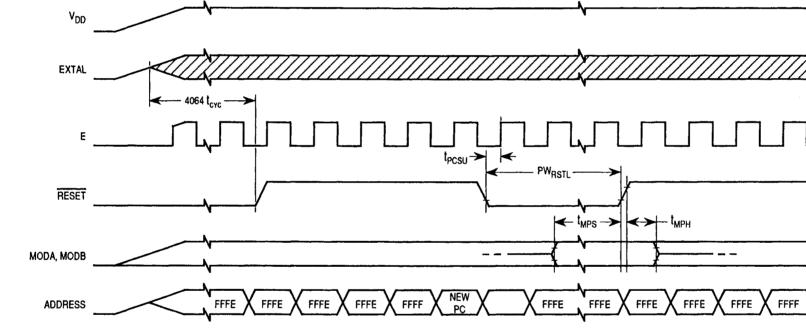

Rising edge sensitive input
 Falling edge sensitive input
 Falling edge sensitive input
 Maximum pulse accumulator clocking rate is E-clock frequency divided by 2.

Figure A-2. Timer Inputs

MOTOROLA	SUPPLEMENT TO APPENDIX A	MC68L11L6
A-4	ELECTRICAL CHARACTERISTICS	TECHNICAL DATA

MOTOROLA A-5

Figure A-3. POR External Reset Timing Diagram

NEW PC

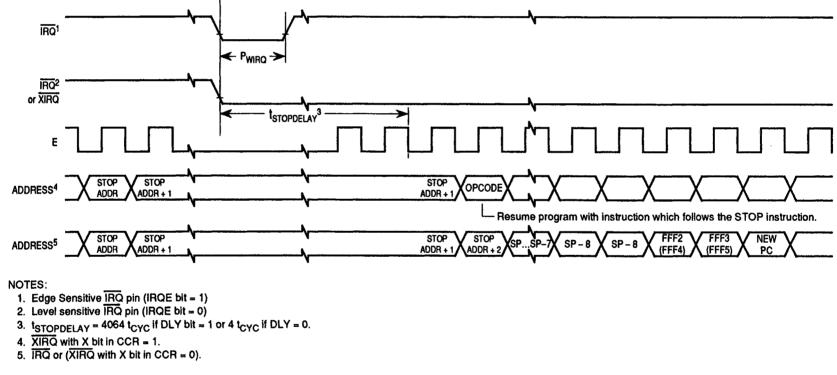
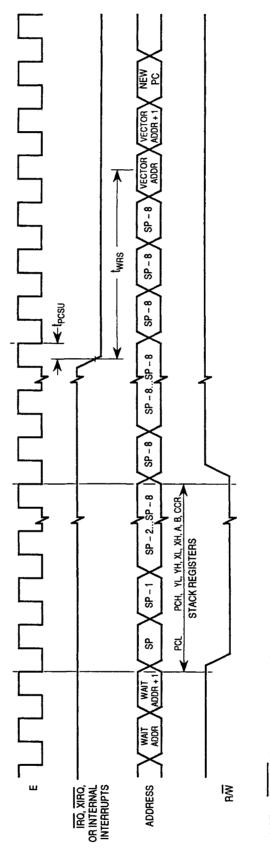



Figure A-4. STOP Recovery Timing Diagram

NOTE: RESET also causes recovery from WAIT.

Figure A-5. WAIT Recovery from Interrupt Timing Diagram

MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A-7

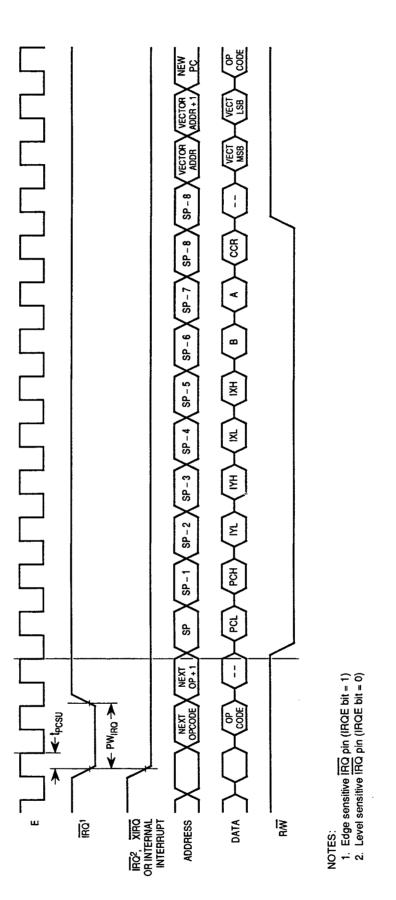


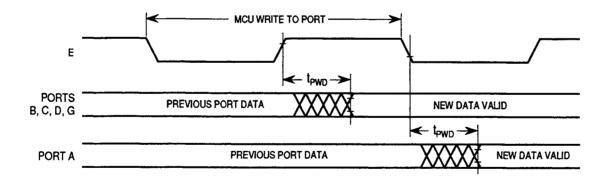
Figure A-6. Interrupt Timing Diagram

.

MOTOROLA	SUPPLEMENT TO APPENDIX A	MC68L11L6
A-8	ELECTRICAL CHARACTERISTICS	TECHNICAL DATA

Table A–5a. Peripheral Por	t Timing
----------------------------	----------

 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_{A} = T_{L} to T_{H}


Characteristic		1.0	MHz	2.0 MHz		Unit
		Min	Max	Min	Max	
Frequency of Operation (E-Clock Frequency)	fo	dc	1.0	dc	2.0	MHz
E-Clock Period	t _{cyc}	1000	—	500	-	ns
Peripheral Data Setup Time MCU Read of Ports A, C, D, E, and G	^t PDSU	100	—	100		ns
Peripheral Data Hold Time MCU Read of Ports A, C, D, E, and G	^t PDH	50	—	50	-	ns
Delay Time, Peripheral Data Write						
MCU Write to Port A MCU Writes to Ports B, C, D, and G $t_{PWD} = 1/4 t_{cyc} + 150 \text{ ns}$			250 400	_	250 275	ns ns
Input Data Setup Time (Port C)	tis.	60	-	60	_	ns
Input Data Hold Time (Port C)	ţін	100	_	100	_	ns
Delay Time, E Fall to STRB t _{DEB} = 1/4 t _{cyc} + 150 ns	^t DEB		400		275	ns
Setup Time, STRA Asserted to E Fall (Note 1)		0	—	0	—	ns
Delay Time, STRA Asserted to Port C Data Output Valid			100	1	100	ns
Hold Time, STRA Negated to Port C Data		10	—	10		ns
Three-State Hold Time	tPCZ	—	150	_	150	ns

NOTES:

1. If this setup time is met, STRB acknowledges in the next cycle. If it is not met, the response may be delayed one more cycle.

2. Port C and D timing is valid for active drive (CWOM and DWOM bits not set in PIOC and SPCR registers respectively).

3. All timing is shown with respect to 20% $V_{\mbox{DD}}$ and 70% $V_{\mbox{DD}},$ unless otherwise noted.

MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A9

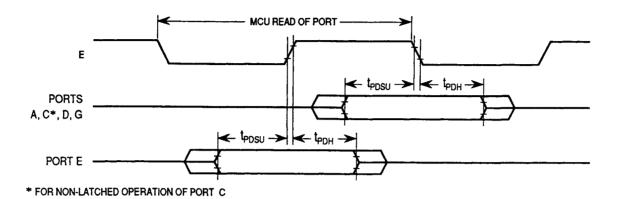


Figure A-8. Port Read Timing Diagram

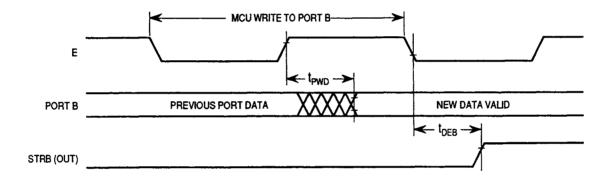


Figure A-9. Simple Output Strobe Timing Diagram

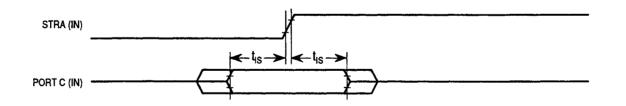
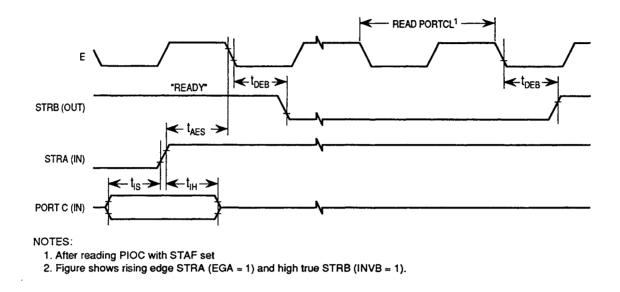



Figure A-10. Simple Input Strobe Timing Diagram

MOTOROLA	SUPPLEMENT TO APPENDIX A	MC68L11L6
A-10	ELECTRICAL CHARACTERISTICS	TECHNICAL DATA

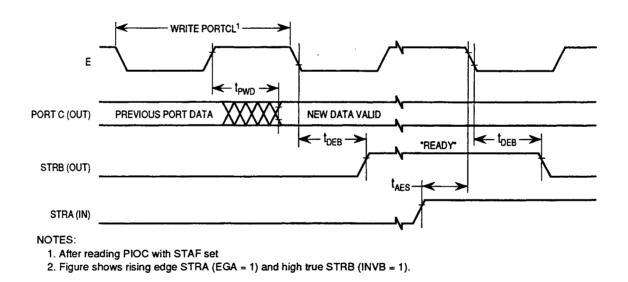


Figure A-12. Port C Output Handshake Timing Diagram

MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A–11

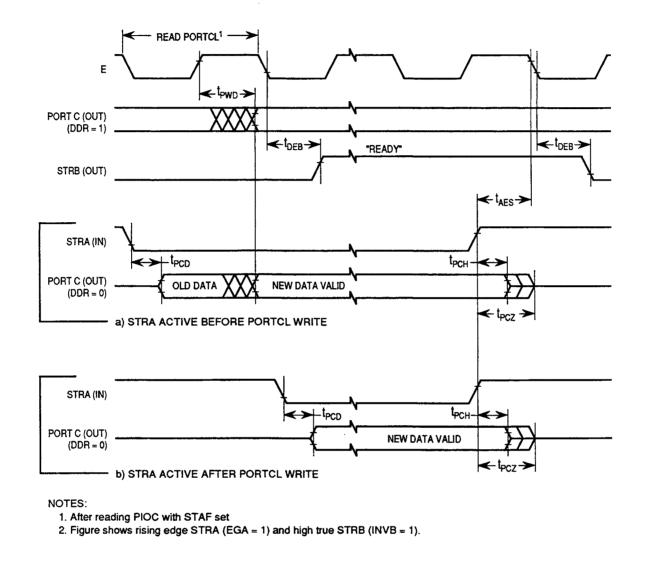


Figure A–13. Three-State Variation of Output Handshake Timing Diagram (STRA Enables Output Buffer)

MOTOROLA	SUPPLEMENT TO APPENDIX A	MC68L11L6
A-12	ELECTRICAL CHARACTERISTICS	TECHNICAL DATA

Table A-6a. Analog-To-Digital Converter Characteristics

Characteristic	Parameter		Min	Absolute	Max	Unit
Resolution	Number of Bits Resolved by A/D Con	—	8	_	Bits	
Non-Linearity	Maximum Deviation from the Ideal A/ Characteristics	D Transfer	_	—	± 1	LSB
Zero Error	Difference Between the Output of an an Actual for Zero Input Voltage	Ideal and	·	_	±1	LSB
Full Scale Error	Difference Between the Output of an an Actual A/D for Full-Scale Input	ldeal and /oltage			± 1	LSB
Total Unadjusted Error	Maximum Sum of Non-Linearity, Zero Full-Scale Error	Error, and			± 1 1/2	LSB
Quantization Error	Uncertainty Because of Converter R	esolution			± 1/2	LSB
Absolute Accuracy				-	±2	LSB
Conversion Range	Analog Input Voltage Range		V _{RL}	—	VRH	V
V _{RH}	Maximum Analog Reference Voltage		V _{RL}		V _{DD} + 0.1	V
V _{RL}	Minimum Analog Reference Voltage		V _{SS} -0.1		V _{RH}	V
ΔVR	Minimum Difference between VRH and	i V _{RL}	3.0			V
Conversion Time	Total Time to Perform a Single Analog-to-Digital Conversion:					
		E Clock		32	_	tcyc
	Internal RC	Oscillator		—	t _{cyc} + 32	μs
Monotonicity	Conversion Result Never Decreases Increase in Input Voltage and has Codes			Guaranteed		
Zero Input Reading	Conversion Result when $V_{in} = V_{RL}$		00			Hex
Full Scale Reading	Conversion Result when $V_{in} = V_{RH}$			—	FF	Hex
Sample	Analog Input Acquisition Sampling Ti	me:				
Acquisition Time		E Clock	-	12		t _{cyc}
	Internal RC	Oscillator			12	μs
Sample/Hold Capacitance	Input Capacitance During Sample	PE[7:0]		20 (Тур)		рF
Input Leakage	Input Leakage on A/D Pins	PE[7:0]			400	nA
		V _{RL} , V _{RH}	_		1.0	μA

 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H 750 kHz $\leq E \leq$ 2.0 MHz, unless otherwise noted

NOTES:

1. Source impedances greater than 10 k Ω affect accuracy adversely because of input leakage.

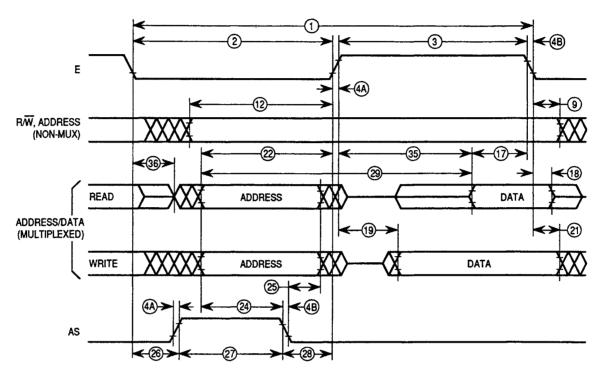
MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A–13

Table	A7a.	Expansion	Bus	Timing
-------	------	-----------	-----	--------

 $V_{DD} = 3.0$ Vdc to 5.5 Vdc, $V_{SS} = 0$ Vdc, $T_A = T_L$ to T_H

Num	um Characteristic		Symbol	1.0 MHz		2.0	MHz	Unit
				Min	Max	Min	Max	
	Frequency of Operation (E-Clock Frequency	()	fo	dc	1.0	dc	2.0	MHz
1	Cycle Time		t _{cyc}	1000	_	500	_	ns
2	Pulse Width, E Low PW _{EL} = 1/2 t _{cyc} – 25 ns		PW _{EL}	475	—	225	-	ns
3	Pulse Width, E High PW _{EH} = 1/2 t _{cyc} – 30 ns		PWEH	470	-	220	-	ns
4A 4B	E and AS Rise Time E and AS Fall Time		tr tf	_	25 25		25 25	ns ns
9	Address Hold Time t _{AH} = 1/8 t _{cyc} - 30 ns	(Note 1a)	^t AH	95		33		ns
12	Non-Muxed Address Valid Time to E Rise $t_{AV} = PW_{EL} - (t_{ASD} + 80 \text{ ns})$	(Note 1a)	^t AV	275	-	88	—	ns
17	Read Data Setup Time		t _{DSR}	30		30		ns
18	Read Data Hold Time (Max = t _{MAD})		^t DHR	0	150	0	88	ns
19	Write Data Delay Time t _{DDW} = 1/8 t _{cyc} + 70 ns	(Note 1a)	tDDW	_	195	—	133	ns
21	Write Data Hold Time t _{DHW} = 1/8 t _{cyc} – 30 ns	(Note 1a)	^t DHW	95		33	-	ns
22	Muxed Address Valid Time to E Rise t _{AVM} ≖ PW _{EL} – (t _{ASD} + 90 ns)	(Note 1a)	^t A∨M	265	-	78	—	ns
24	Muxed Address Valid Time to AS Fall t _{ASL} = PW _{ASH} - 70 ns		^t asl	150		25	-	ns
25	Muxed Address Hold Time $t_{AHL} = 1/8 t_{cyc} - 30 \text{ ns}$	(Note 1b)	tAHL	95	—	33	_	ns
26	Delay Time, E to AS Rise t _{ASD} = 1/8 t _{cyc} - 5 ns	(Note 1a)	^t ASD	120	—	58	-	ns
27	Pulse Width, AS High PW _{ASH} = 1/4 t _{cyc} – 30 ns		PWASH	220	—	95	_	ns
28	Delay Time, AS to E Rise t _{ASED} = 1/8 t _{cyc} – 5 ns	(Note 1b)	^t ASED	120	-	58		ns
29	MPU Address Access Time tACCA = t _{cyc} - (PW _{EL} -t _{AVM}) - t _{DSR} -t _f	(Note 1a)	^t ACCA	735	—	298	-	ns
35	MPU Access Time tACCE = PWEH - tDSR		^t ACCE	_	440		190	ns
36	Muxed Address Delay (Previous Cycle MPU Read) t _{MAD} = t _{ASD} + 30 ns	(Note 1a)	^t MAD	150	—	88	-	ns

NOTES:


Input clocks with duty cycles other than 50% affect bus performance. Timing parameters affected by input clock duty cycle are identified by (a) and (b). To recalculate the approximate bus timing values, substitute the following expressions in place of 1/8 t_{cyc} in the above formulas, where applicable:

 (a) (1DC) × 1/4 t_{cyc}
 (b) DC × 1/4 t_{cyc}

Where:

DC is the decimal value of duty cycle percentage (high time).
 All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted.

MOTOROLA	SUPPLEMENT TO APPENDIX A	MC68L11L6
A-14	ELECTRICAL CHARACTERISTICS	TECHNICAL DATA

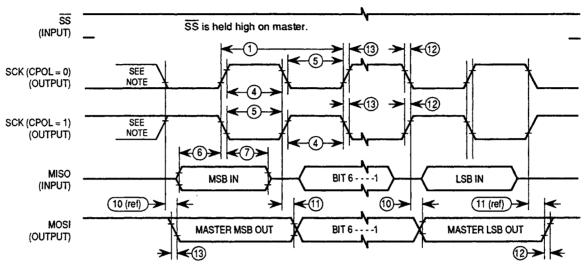
NOTE: Measurement points shown are 20% and 70% of $\mathrm{V}_{\mathrm{DD}}.$

MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A15

Table A-8a. Serial Peripheral Interface Timing

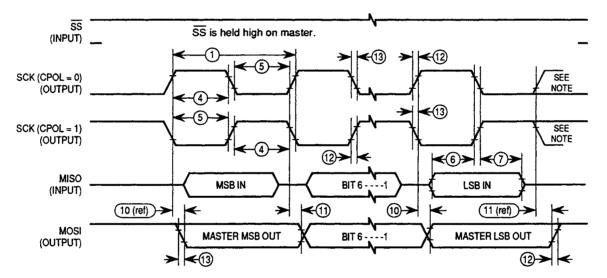
 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H

Num	Characteristic	Symbol	1.0 MHz		2.0 MHz		Unit
			Min	Max	Min	Max	
	Operating Frequency Master Slave	^f op(m) ^f op(s)	dc dc	0.5 1.0	dc dc	0.5 2.0	f _{op} MHz
1	Cycle Time Master Slave	^t cyc(m) t _{cyc(s)}	2.0 1000	_	2.0 500		^t cyc ns
2	Enable Lead Time Master (Note 2) Slave	^t lead(m) ^t lead(s)	500	_	 250		ns ns
3	Enable Lag Time Master (Note 2) Slave	^t lag(m) ^t lag(s)	 500	=	 250	_	ns ns
4	Clock (SCK) High Time Master Slave	^t w(SCKH)m ^t w(SCKH)s	680 380	_	340 190	_	ns ns
5	Clock (SCK) Low Time Master Slave	^t w(SCKL)m ^t w(SCKL)s	680 380	_	340 190		ns ns
6	Data Setup Time (Inputs) Master Slave	^t su(m) ^t su(s)	100 100	=	100 100	=	ns ns
7	Data Hold Time (Inputs) Master Slave	t _{h(m)} t _{h(s)}	100 100	_	100 100	_	ns ns
8	Access Time (Time to Data Active from High-Imp. State) Slave	ta	0	120	0	120	ns
9	Disable Time (Hold Time to High-Impedance State) Slave	t _{dis}	_	240		240	ns
10	Data Valid (After Enable Edge) (Note 3)	t _{v(s)}	-	240		240	ns
11	Data Hold Time (Outputs) (After Enable Edge)	tho	0		0	—	ns
12	Rise Time (20% V _{DD} to 70% V _{DD} , C _L = 200 pF) SPI Outputs (SCK, MOSI, and MISO) SPI Inputs (SCK, MOSI, MISO, and SS)	t _m t _{rs}	_	100 2.0		100 2.0	ns µs
13	Fall Time (70% V _{DD} to 20% V _{DD} , C _L = 200 pF) SPI Outputs (SCK, MOSI, and MISO) SPI Inputs (SCK, MOSI, MISO, and SS)	t _{fm} t _{fs}	_	100 2.0		100 2.0	ns µs


NOTES:

1. All timing is shown with respect to 20% V_{DD} and 70% $V_{DD},$ unless otherwise noted.

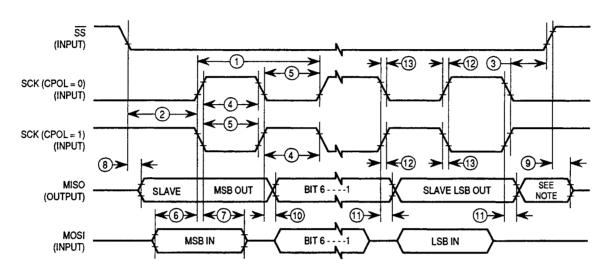
2. Signal production depends on software.


3. Assumes 100 pF load on all SPI pins.

MOTOROLA	SUPPLEMENT TO APPENDIX A	MC68L11L6
A–16	ELECTRICAL CHARACTERISTICS	TECHNICAL DATA

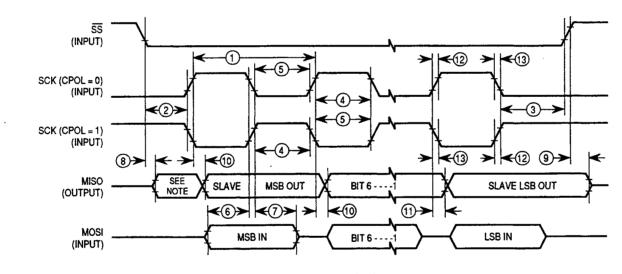
NOTE: This first clock edge is generated internally but is not seen at the SCK pin.

a) SPI Master Timing (CPHA = 0)



NOTE: This last clock edge is generated internally but is not seen at the SCK pin.

b) SPI Master Timing (CPHA = 1)


Figure A-15. SPI Timing Diagram (1 of 2)

MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A–17

NOTE: Not defined but normally MSB of character just received.

a) SPI Slave Timing (CPHA = 0)

NOTE: Not defined but normally LSB of character previously transmitted.

b) SPI Slave Timing (CPHA = 1)

Figure A-15. SPI Timing Diagram (2 of 2)

MOTOROLA	SUPPLEMENT TO APPENDIX A	MC68L11L6
A–18	ELECTRICAL CHARACTERISTICS	TECHNICAL DATA

Table A-9a. EEPROM Characteristics

 V_{DD} = 3.0 Vdc to 5.5 Vdc, V_{SS} = 0 Vdc, T_{A} = T_{L} to T_{H}

Characteristic		Temperature Range – 20 to 70° C	Unit
Programming Time (Note 1)	3 V, E \leq 2.0 MHz, RCO Enabled 5 V, E \leq 2.0 MHz, RCO Enabled	25 10	ms ms
Erase Time (Byte, Row and Bulk) (Note 1)	3 V, E \leq 2.0 MHz, RCO Enabled 5 V, E \leq 2.0 MHz, RCO Enabled	25 10	ms ms
Write/Erase Endurance (Note 2)		10,000	Cycles
Data Retention (Note 2)		10	Years

NOTES:

1. The RC oscillator (RCO) must be enabled (by setting the CSEL bit in the OPTION register) for EEPROM programming and erasure.

2. Refer to Reliability Monitor Report (current quarterly issue) for current failure rate information.

MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A–19

•

MOTOROLA	SUPPLEMENT TO APPENDIX A	MC68L11L6
A-20	ELECTRICAL CHARACTERISTICS	TECHNICAL DATA

.

MC68L11L6	SUPPLEMENT TO APPENDIX A	MOTOROLA
TECHNICAL DATA	ELECTRICAL CHARACTERISTICS	A-21

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended to surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended our unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274

JAPAN: Nippon Motorola Ltd. SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shagawa-ku, Tokyo 141, Japan, 03-5487-8488 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong, 852-26629298 Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 1997

1ATX31104-1 PRINTED IN USA 12/97 IMPERIAL LITHO 33413 500 LITCSIC

