National Semiconductor

MM54C164/MM74C164 8-Bit Parallel-Out Serial Shift Register

General Description

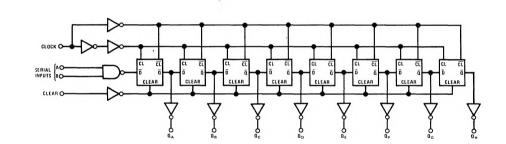
The MM54C164/MM74C164 shift registers are a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. These 8-bit shift registers have gated serial inputs and clear. Each register bit is a D-type master/slave flip flop. A high-level input enables the other input which will then determine the state of the flip flop.

Data is serially shifted in and out of the 8-bit register during the positive going transition of clock pulse. Clear is independent of the clock and accomplished by a low level at the clear input. All inputs are protected against electrostatic effects.

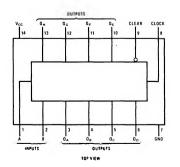
Features

- Supply voltage range
- Tenth power TTL compatible
- High noise immunity
- Low power
- Medium speed operation

Applications


- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems

drive 2 LPTTL loads 0.45 V_{CC} (typ.) 50 nW (typ.) 8.0 MHz (typ.) with 10 V supply


3 V to 15 V

- Industrial electronics
- Remote metering
- Computers

Block Diagram

Connection Diagram

Truth Tables

Serial Inputs A and B

INPUTS		OUTPUT t _{n+1}		
A	в	QA		
1	1	1		
0	1	0		
1	0	0		
0	0	0		

Absolute Maximum Ratings (Note 1)

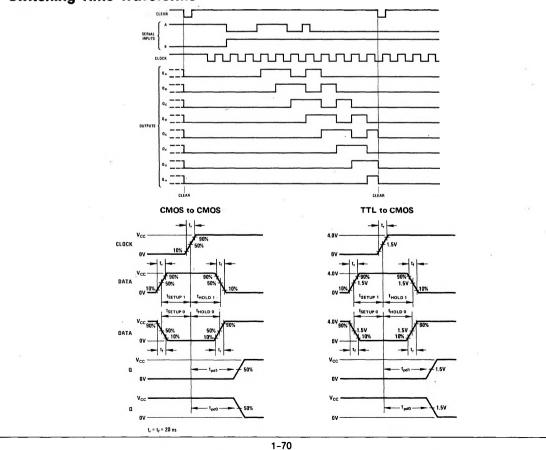
Voltage at Any Pin	-0.3 V to V _{CC} +0.3 V
Operating Temperature Range	
MM54C164	-55°C to +125°C
MM74C164	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Absolute Maximum V _{CC}	18 V
Package Dissipation	500 mW
Operating V _{CC} Range	3V to 15V
Lead Temperature (Soldering, 10 sec.)	300°C

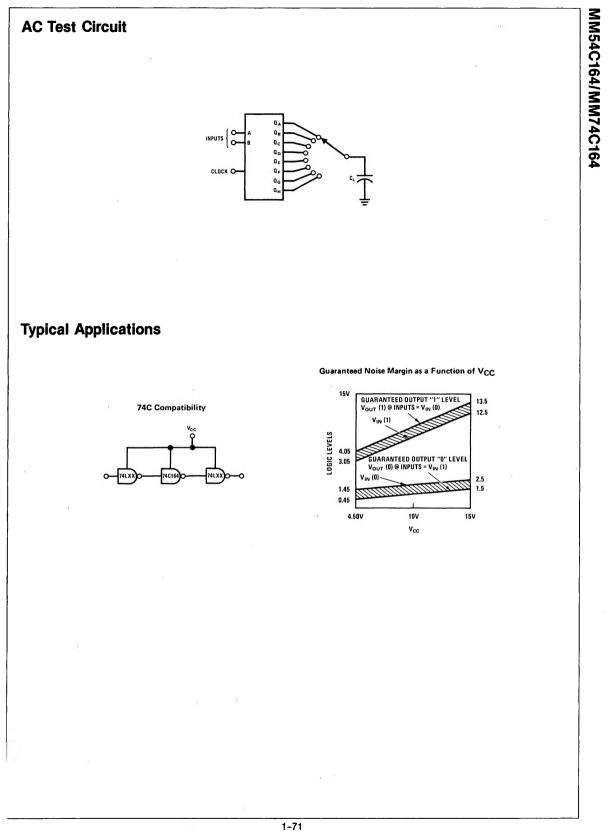
DC Electrical Characteristics Max./min. limits apply across temperature range, unless otherwise noted.

Parameter		Conditions	Min.	Тур.	Max.	Units
	CMOS to CMOS					
VIN(1)	Logical "1" Input Voltage	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	3.5 8.0			v v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$			1.5 2.0	v v
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0 V, I_{O} = -10 \mu A$ $V_{CC} = 10 V, I_{O} = -10 \mu A$	4.5 9.0			V V
V _{OUT(0)}	Logical-"0" Output Voltage	$V_{CC} = 5.0 V, I_0 = +10 \mu A$ $V_{CC} = 10 V, I_0 = +10 \mu A$			0.5 1.0	v v
ί _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15 V, V_{1N} = 15 V$		0.005	1.0	μA
1 _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15 V, V_{IN} = 0 V$	-1.0	-0.005		μA
lcc	Supply Current	$V_{CC} = 15 V$		0.05	300	μA
	CMOS to LPTTL Interface					100
V _{IN(1)}	Logical "1" Input Voltage	$\begin{array}{ll} 54C & V_{CC} = 4.5 V \\ 74C & V_{CC} = 4.75 V \end{array}$	V _{CC} – 1.5 V _{CC} – 1.5			V v
VIN(0)	Logical "0" Input Voltage	$\begin{array}{ll} 54C & V_{CC} = 4.5 V \\ 74C & V_{CC} = 4.75 V \end{array}$			0.8 0.8	v v
V _{OUT(1)}	Logical "1" Output Voltage	$\begin{array}{lll} 54C & V_{CC} = 4.5 V, \ I_{O} = -360 \mu A \\ 74C & V_{CC} = 4.75 V, \ I_{O} = -360 \mu A \end{array}$	2.4 2.4			v v
V _{OUT(O)}	Logical "0" Output Voltage	$\begin{array}{lll} 54C & V_{CC} = 4.5 \text{V}, & I_O = 360 \mu \text{A} \\ 74C & V_{CC} = 4.75 \text{V}, & I_O = 360 \mu \text{A} \end{array}$			0.4 0.4	V V
	Output Drive (See 54C/74C F	amily Characteristics Data Sheet) (Short Circ	uit Current)	
SOURCE	Output Source Current	$V_{CC} = 5.0 V, V_{IN(0)} = 0 V$ $T_A = 25^{\circ}C, V_{OUT} = 0 V$	-1.75			mA
SOURCE	Output Source Current	$V_{CC} = 10 V, V_{IN(0)} = 0 V$ $T_A = 25^{\circ}C, V_{OUT} = 0 V$	-8.0			mA
I _{SINK}	Output Sink Current	$V_{CC} = 5.0 V, V_{IN(1)} = 5.0 V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	1.75			mA
ISINK	Output Sink Current	$V_{CC} = 10 V, V_{IN(1)} = 10 V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	8.0			mA

MM54C164/MM74C164

AC Electrical Characteristics $T_A = 25$ °C, $C_L = 50$ pF, unless otherwise noted.


Parameter		Conditions	Min.	Тур.	Max.	Units
t _{pd1}	Propagation Delay Time to a Logical "0" or a Logical "1" from Clock to Q	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		230 90	310 120	ns ns
t _{pd0}	Propagation Delay Time to a Logical "0" from Clear to Q	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		280 110	380 150	ns ns
ts	Time Prior to Clock Pulse that Data Must be Present	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	200 80	110 30		ns ns
t _H	Time After Clock Pulse that Data Must be Held	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	0 0	0		ns ns
t _{MAX}	Maximum Clock Frequency	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	2.0 5.5	3 8		MHz MHz
tw	Minimum Clear Pulse Width	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		150 55	250 90	ns ns
t _r , t _f	Maximum Clock Rise and Fall Time	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	15 5.0			μs μs
CIN	Input Capacitance	Any Input (Note 2)		5		pF
CPD	Power Dissipation Capacitance	(Note 3)		140		pF


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note AN-90.

Switching Time Waveforms

