# National Semiconductor

# MM54C195/MM74C195 4-bit Registers

### **General Description**

The MM54C195/MM74C195 CMOS 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/ load control input and a direct overriding clear. The following two modes of operation are possible:

Parallel Load Shift in direction Q<sub>A</sub> towards Q<sub>D</sub>

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control of input low. The data is loaded into the associated flip-flops and appears at the outputs after the positive transition of the clock input. During parallel loading, serial data flow is inhibited.

Serial shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J-K inputs. These inputs allow the first stage to perform as a J-K, D, or T-type flip flop as shown in the truth table.

#### **Features**

- Medium speed operation
- High noise immunity
  - Low power

- Tenth power TTL compatible
- Supply voltage range
- Synchronous parallel load
- Parallel inputs and outputs from each flip-flop
- Direct overriding clear
- J and K inputs to first stage
- Complementary outputs from last stage
- Positive-edge triggered clocking
- Diode clamped inputs to protect against static charge

#### **Applications**

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Remote metering
- Industrial electronicsComputers

8.5 MHz (typ.) with 10 V

supply and 50pF load

0.45 V<sub>CC</sub> (typ.)

100 nW (typ.) drive 2 LPTTL loads

3 V to 15 V

MM54C195/MM74C195

# Schematic and Connection Diagrams



## Absolute Maximum Ratings (Note 1)

| Voltage at Any Pin                    | -0.3 V to V <sub>CC</sub> + 0.3 V |
|---------------------------------------|-----------------------------------|
| Operating Temperature Range           |                                   |
| MM54C195                              | -55°C to +125°C                   |
| MM74C195                              | -40°C to +85°C                    |
| Storage Temperature Range             | -65°C to +150°C                   |
| Package Dissipation                   | 500 mW                            |
| Operating V <sub>CC</sub> Range       | 3.0V to 15V                       |
| Absolute Maximum V <sub>CC</sub>      | 18 V                              |
| Lead Temperature (Soldering, 10 sec.) | 300°C                             |

### DC Electrical Characteristics Max./min. limits apply across temperature range, unless otherwise noted.

| Parameter          |                             | Conditions                                                                                          | Min.                                           | Тур.                 | Max.       | Units  |
|--------------------|-----------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|------------|--------|
|                    | CMOS to CMOS                |                                                                                                     |                                                | <b>-</b> -           |            | •      |
| V <sub>IN(1)</sub> | Logical "1" Input Voltage   | $V_{CC} = 5.0 V$ $V_{CC} = 10 V$                                                                    | 3.5<br>8.0                                     |                      |            | v<br>v |
| V <sub>IN(0)</sub> | Logical "0" Input Voltage   | V <sub>CC</sub> = 5.0 V<br>V <sub>CC</sub> = 10 V                                                   |                                                |                      | 1.5<br>2.0 | v      |
| VOUT(1)            | Logical "1" Output Voltage  | V <sub>CC</sub> = 5.0 V<br>V <sub>CC</sub> = 10 V                                                   | 4.5<br>9.0                                     |                      |            | v<br>v |
|                    | Logical "0" Output Voltage  | V <sub>CC</sub> = 5.0 V,<br>V <sub>CC</sub> = 10 V                                                  |                                                |                      | 0.5<br>1.0 | V<br>V |
| IN(1)              | Logical "1" Input Current   | V <sub>CC</sub> = 15 V                                                                              |                                                | 0.005                | 1.0        | μΑ     |
| IN(0)              | Logical "0" Input Current   | $V_{CC} = 15 V$                                                                                     | -1.0                                           | -0.005               |            | μA     |
| сс                 | Supply Current              | $V_{CC} = 15 V$                                                                                     |                                                | 0.05                 | 300        | μA     |
|                    | CMOS/LPTTL Interface        |                                                                                                     |                                                |                      |            |        |
| / <sub>IN(1)</sub> | Logical "1" Input Voltage   | $\begin{array}{ccc} 54C & V_{CC} = 4.5  V \\ 74C & V_{CC} = 4.75  V \end{array}$                    | V <sub>CC</sub> - 1.5<br>V <sub>CC</sub> - 1.5 |                      | v          | v      |
| N(0)               | Logical "0" Input Voltage   | 54C V <sub>CC</sub> = 4.5 V<br>74C V <sub>CC</sub> = 4.75 V                                         |                                                |                      | 0.8<br>0.8 | v<br>v |
| OUT(1)             | Logical "1" Output Voltage  | 54C $V_{CC} = 4.5 V$ , $I_O = -360 \mu A$<br>74C $V_{CC} = 4.75 V$ , $I_O = -360 \mu A$             | 2.4<br>2.4                                     |                      |            |        |
| ουτ(ο)             | Logical "0" Output Voltage  | <sup>54C</sup> $V_{CC} = 4.5 V$ , $I_O = 360 \mu A$<br>74C $V_{CC} = 4.75 V$ , $I_O = 360 \mu A$    |                                                |                      | 0.4<br>0.4 | V<br>V |
|                    | Output Drive (See 54C/74C F | amily Characteristics Data Sheet) (                                                                 | Short Circuit                                  | Current)             |            | Ö      |
| SOURCE             | Output Source Current       | $V_{CC} = 5.0 V, V_{IN(0)} = 0 V$<br>T <sub>A</sub> = 25°C, V <sub>OUT</sub> = 0 V                  | -1.75                                          |                      |            | mA     |
| OURCE              | Output Source Current       | $V_{CC} = 10 V, V_{IN(0)} = 0 V$<br>$T_A = 25^{\circ}C, V_{OUT} = 0 V$                              | -8.0                                           |                      |            | mA     |
| INK                | Output Sink Current         | $V_{CC} = 5.0 \text{ V}, V_{IN(1)} = 5.0 \text{ V}$<br>$T_A = 25^{\circ}\text{C}, V_{OUT} = V_{CC}$ | 1.75                                           |                      |            | mA     |
| INK                | Output Sink Current         | $V_{CC} = 10 \text{ V}, V_{IN(1)} = 10 \text{ V}$<br>$T_A = 25^{\circ}\text{C}, V_{OUT} = V_{CC}$   | 8.0                                            |                      |            | mA     |
| ruth               | Table                       |                                                                                                     | Guaranteed n<br>a Function of                  | oise Margin a<br>VCC | IS         |        |

| INPUT | SAT t <sub>n</sub> | OUTPUTS AT tn+1                                   |                                                              |                                                   |                  |                 |  |  |
|-------|--------------------|---------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|------------------|-----------------|--|--|
| J     | ĸ                  | QA                                                | 0 <sub>B</sub>                                               | 0 <sub>C</sub>                                    | QD               | āD              |  |  |
| L     | н                  | QAn                                               | Q <sub>An</sub>                                              | Q <sub>Bn</sub>                                   | Q <sub>C</sub> , | Qcn             |  |  |
| ι     | L                  | L                                                 | 0 <sub>A</sub> .,                                            | Q <sub>en</sub>                                   | Q <sub>Cn</sub>  | ā <sub>cn</sub> |  |  |
| н     | н                  | н                                                 | 0 <sub>4</sub> ,                                             | O <sub>Bn</sub>                                   | Q <sub>Cn</sub>  | ācn             |  |  |
| н     | L                  | QAn                                               | QAn                                                          | Q <sub>Bn</sub>                                   | 0 <sub>Cn</sub>  | 0 <sub>cn</sub> |  |  |
|       | Note:  <br>t<br>t  | H - HIGH<br>n - bit tii<br>n 1 - bit<br>DAn - Sta | LEVEL,<br>me before<br>time after<br>ate of Q <sub>A</sub> : | L - LOW L<br>clock puls<br>clock pul<br>clock pul | .EVEL<br>e<br>se |                 |  |  |

![](_page_1_Figure_6.jpeg)

### AC Electrical Characteristics $T_A = 25^{\circ}C$ , $C_L = 50 \text{ pF}$ , unless otherwise noted.

|                                 |                                                                                | T                                   |            |             |            |            |
|---------------------------------|--------------------------------------------------------------------------------|-------------------------------------|------------|-------------|------------|------------|
|                                 | Parameter                                                                      | Conditions                          | Min.       | Тур.        | Max.       | Units      |
| t <sub>pd</sub>                 | Propagation Delay Time to a Logical "0" or<br>Logical "1" from Clock to Q or Q | $V_{CC} = 5.0 V$<br>$V_{CC} = 10 V$ |            | 150<br>75   | 300<br>130 | ns<br>ns   |
| t <sub>pd</sub>                 | Propagation Delay Time to a Logical "0" or<br>Logical "1" from Clear to Q or Q | $V_{CC} = 5.0 V$<br>$V_{CC} = 10 V$ |            | 150<br>50   | 300<br>130 | ns<br>ns   |
| t <sub>S</sub>                  | Time Prior to Clock Pulse that Data must be<br>Present                         | $V_{CC} = 5.0 V$<br>$V_{CC} = 10 V$ |            | 80<br>35    | 200<br>70  | ns<br>ns   |
| ts                              | Time Prior to Clock Pulse that Shift/Load must<br>be Present                   | $V_{CC} = 5.0 V$<br>$V_{CC} = 10 V$ |            | 110<br>60   | 150<br>90  | ns<br>ns   |
| t <sub>H</sub>                  | Time After Clock Pulse that Data must be Held                                  | $V_{CC} = 5.0 V$<br>$V_{CC} = 10 V$ |            | −10<br>−5.0 | 0<br>0     | ns<br>ns   |
| tw                              | Minimum Clear Pulse Width ( $t_{WL} = t_{WH}$ )                                | $V_{CC} = 5.0 V$<br>$V_{CC} = 10 V$ |            | 100<br>50   | 200<br>100 | ns<br>ns   |
| tw                              | Minimum Clear Pulse Width                                                      | $V_{CC} = 5.0 V$<br>$V_{CC} = 10 V$ |            | 90<br>40    | 130<br>60  | ns<br>ns   |
| t <sub>r</sub> , t <sub>f</sub> | Maximum Clock Rise and Fall Time                                               | $V_{CC} = 5.0 V$<br>$V_{CC} = 10 V$ | 5.0<br>2.0 |             |            | μS<br>μS   |
| f <sub>MAX</sub>                | Maximum Input Clock Frequency                                                  | $V_{CC} = 5.0 V$<br>$V_{CC} = 10 V$ | 2.0<br>5.5 | 3.0<br>8.5  |            | MHz<br>MHz |
| CIN                             | Input Capacitance                                                              | (Note 2)                            |            | 5.0         |            | pF         |
| CPD                             | Power Dissipation Capacitance                                                  | (Note 3)                            |            | 100         |            | рF         |

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: CPD determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note AN-90.

## **Switching Time Waveforms**

![](_page_2_Figure_6.jpeg)

TTL to CMOS

![](_page_2_Figure_8.jpeg)

MM54C195/MM74C195