DESCRIPTION

The MP8251 is a programmable Universal Synchronous/Asynchronous Receiver/ Transmitter (USART) chip contained in a standard 28-pin dual-in-line package. The chip, which is fabricated using N-channel silicon gate technology, functions as a serial data input/output interface in the MP8080A microcomputer family. The functional configuration of the MP8251 is programmed by the system software for maximum flexibility, thereby allowing the system to receive and transmit virtually any serial data communication signal presently in use (including IBM Bisync).

The MP8251 can be programmed to receive and transmit either synchronous or asynchronous serial data. The MP8251 performs serial-to-parallel conversion on data characters received from an input/output device or a MODEM, and parallel-to-serial conversion on data characters received from the CPU. The CPU can read the complete status of the MP8251 at any time during the functional operation. Status information reported includes the type and the condition of the transfer operations being performed by the MP8251, as well as any transmission error conditions (parity, overrun, or framing).

FEATURES


- Synchronous and asynchronous full duplex operations
 Synchronous Mode Canabilities
 - Synchronous Mode Capabilities Selectable 5- to 8-Bit characters Internal or external character synchronization
- Automatic sync insertion • Asynchronous mode capabilities Selectable 5- to 8-Bit characters 3 selectable clock rates (1x, 16x or 64x the baud rate)

Line break detection and generation 1-, 11/2-, or 2-Stop bit detection and generation

False start bit detection

- Baud rates
 - DC to 56k baud (synchronous mode) DC to 9.6k baud (asynchronous mode)
- Transmission error detection capabilities
 Parity
 - Overrun
 - Framing

PIN CONFIGURATION

MP8251

MP8251-I

· Double buffering of data

- TTL compatible
- Single TTL clock
- Reduces system component count

PIN DESIGNATION

MNEMONIC	TYPE	NAME AND FUNCTION					
ĈŜ	1	Chip select: When low (logic 0), the chip is selected. This enables com- munication between the MP8251 and the MP8080A microprocessor.					
RD	1.1	Read: When low, allows the MP8080A to read data or status information from the MP8251.					
WR	1	Write: When low, allows the MP8080A to write data or control words into the MP8251.					
C/D	1	Control/data: Used in conjunction with an active RD or WR input (logic 0) to determine overall device operation as indicated below.					
		CS C/D RD WR OPERATION					
		0001Data character read from MP82510010Data character written into MP82510101Status information read from MP82510110Control word written into MP82511xxxDevice not selected					
RESET		Reset: When high (logic 1), places the MP8251 in the idle mode. The device remains in this mode until a new set of control words is written into the MP8251 to program its functional definition. Minimum Reset pulse width is 6 t _{CY} .					
CLK		Clock: TTL clock that is used to generate internal timing signals for the MP8251. The minimum frequency of the CLK input is 30 times the receiver/transmitter clock frequency for the synchronous mode, and 4.5 times the receiver/transmitter clock frequency for the asynchronous mode. The CLK input is normally connected to the ϕ_2 (TTL) output of the 8224 Clock Generator and Driver device.					
DSR		Data set ready: General purpose input whose condition can be tested by the MP8080A using a status read operation. However, a low level DSR input is normally used to test data set ready conditions.					
CTS	1	Clear to send: If low when the TxEn bit (D_0) of the command Instruction Control Word (see figure) is set high, enables the MP8251 to transmit					

signetics

MP8251-I

MP8251

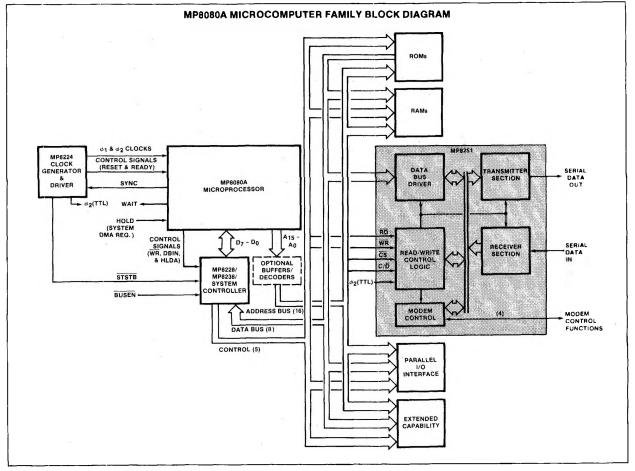
PIN DESIGNATION (Cont'd)

MNEMONIC	TYPE	NAME AND FUNCTION
TxC	I	Transmitter Clock: This clock input controls the rate at which a data character is to be transmitted. The frequency of the TxC input is equal to the baud rate for the synchronous mode, and is a multiple (1x, 16x or $64x$) of the baud rate for the asynchronous mode. A portion of the Mode Instruction Word (see figure) selects the value of the baud rate factor when in the asynchronous mode. Transmitter data are clocked out of the MP8251 on the falling edge of the TxC input.
RxD	1	Receiver data: Serial data input from a MODEM or an input/output device.
RxC		Receiver clock: This clock input controls the rate at which a data character is to be received. The frequency and selection of the RxC input is as described above for the TxC input. Receiver data are clocked into the MP8251 on the rising edge of the RxC input.
Vcc	1	+5V power supply.
GND		Ground: 0-V reference.
DTR	0	Data terminal ready General purpose output which can be set to an active low by programming the DTR bit (D ₁) of the Command Instruction Control Word. However, a low level DTR output is normally used for data terminal ready or rate select control.
RTS	0	Request to send: General purpose output which can be set to an active low by programming the RTS bit (D_5) of the Command Instruction Control Word. However, the RTS output is normally used for request to send control in the transmit mode.
TxD	0	Transmitter data: Composite serial data output to a MODEM or input/output device. The TxD output is held in the marking state (logic 1) upon a Reset operation.
TxRDY	0	Transmitter ready: When high, alerts the MP8080A that the transmitter is ready to accept a data character. The TxRDY output, which is automatically reset whenever a character is written into the MP8251, can be used as an interrupt to the system. For polled operation, the condition of the TxRDY signal can be tested by the MP8080A using a status read operation.
TxE	0	Transmitter empty: Goes high to indicate the end of a transmit mode. The TxE output is automatically reset whenever a character is written into the MP8251. In the synchronous mode, a high-level TxE output indicates that a character has not been loaded, the transmitter buffer is empty, and the sync character(s) of a data block are soon to be transmitted automatically as fillers.
RxRDY	0	Receiver ready: When high, alert the MP8080A that the receiver contains a data character that is ready to be input to the CPU. The RxRDY output, which is automatically reset whenever a character is read from the MP8251, can be used as an interrupt to the system. For polled operation, the condition of the RxRDY signal can be tested by the MP8080A using a status read operation.
D7-D0	1/0	Data bus: This bus comprises eight Tri-state input/output lines. The bus provides bidirectional communications between the MP8251 and the MP8080A. Data are routed to or from the internal data bus buffer upon execution of an MP8080A OUT or IN instruction, respectively. In addition, control words, command words and status information are transferred through the data bus buffer.
SYNDET	1/0	Sync detect: This pin may be used in the synchronous mode only. System software can program SYNDET as either an input or an output. When used as an output (Internal sync detect mode), a high level SYNDET output is automatically reset upon a status read operation by the MP8080A. When used as an input (external sync detect mode) a high level SYNDET causes the MP8251 to start assembling data characters on the falling edge of the next RxC input.

signetics

MP8251-I

MP8251


ABSOLUTE MAXIMUM RATINGS*

	PARAMETER	RATING	UNIT
TA	Ambient temperature under bias	0 to +70	°C
TSTG	Storage temperature	-65 to +150	°C
	Voltage on any pin with respect to ground	-0.5 to +7	V
PD	Power dissipation	1	W

NOTE

Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under dc electrical characteristics.

BLOCK DIAGRAMS

MP8251-I

MP8251

TEST LOAD CIRCUIT BLOCK DIAGRAMS (Cont'd) MP8251 INTERNAL DATA BUS 2V \$ 510 \$ DATA (19) TxD TRANSMIT BUFFER D7 - D0 (27.28.1. 2. & 5-8) BUS Φ DEVICE UNDER ᆂᅂ € 24k (21) 4 Ŧ RESET -(15) (20) TARDY CLK -READ/WRITE (18) (12) C/D -TRANSMIT TxE (13) RD -LOGIC (9) - TXC (10) WR ç (11) CS TYPICAL A OUTPUT DELAY vs △ CAPACITANCE (dB) (22) DSR -+ 20 (24) MODEM (3) RECEIVE - RxD (17) CTS BUFFER (23) RTS -+10 △ OUTPUT DELAY (ns) (26) POWER + + 5V (4) GND 0 SPEC. (14) RERDY (25) RECEIVE -10 BrC (16) SYNDET 20 NOTE - 100 - 50 0 50 + 100 △ CAPACITANCE (pF) Applicable pinout numbers are included within parentheses.

$\label{eq:constraint} \textbf{DC ELECTRICAL CHARACTERISTICS} \quad \textbf{T}_{A} = 0^{\circ} \text{C to } +70^{\circ} \text{C}; \ \textbf{V}_{CC} = 5.0 \text{V} \pm 5 \text{W}; \ \textbf{GND} = 0 \text{V}.$

			LIMITS			
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	
	Input voltage					v
VIH	High		2.0		Vcc	
VIL	Low		-0.5		0.8	
·· ····	Output voltage					V
Vон	High	$I_{OH} = -100 \mu A$	2.4			
Vol	Low	$I_{OL} = 1.6 \text{mA}$			0.45	
	Leakage			1		μΑ
IDL	Data bus	$V_{OUT} = 0.45V$ $V_{OUT} = V_{CC}$			-50 10	
hi.	Input	$V_{\rm IN} = V_{\rm CC}$			10	
lcc	Power supply current			45	80	mA
	Capacitance	$T_A = 25^{\circ}C; V_{CC} = GND = 0V$				pF
CIN	Input	$f_c = 1 MHz$			10	
CI/O	I/O	Unmeasured pins returned to GND			20	

MP8251-I

MP8251

AC ELECTRICAL CHARACTERISTICS $T_A = 0^{\circ}$ C to $+70^{\circ}$ C; $V_{CC} = 5.0V \pm 5\%$; GND = 0V.

	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min Typ		Max	
BUS PA Read Cy	RAMETERS ¹ /cle					
tar	Address stable before READ (CS, C/D)		50			ns
tRA	Address hold time for READ (CS, C/D)		5			ns
tRR	READ pulse width		430			ns
tRD	Data delay from READ	CL = 100pF			350	ns
tDF	READ to data floating	C _L = 100pF			200	ns
		$C_L = 15 pF$	25		1	ns
tRV	Recovery time between WRITES2		6			tcy
Write Cy	/cle					
taw	Address stable before WRITE		20			ns
twA	Address hold time for WRITE		20			ns
tww	WRITE pulse width		400			ns
tow	Data set-up time for WRITE		200		t	ns
twp	Data hold time for WRITE	<u> </u>	40			ns
OTHER	TIMINGS					
tcy	Clock period ³		0.420		1.35	μs
tφw	Clock pulse width		220		0.7tcy	ns
tR, tF	Clock rise and fall time		0		50	ns
tDTx	TxD delay from falling edge of TxC	C _L = 100pF			1	μS
tsex	Rx data set-up time to sampling pulse	C _L = 100pF	2		<u> </u>	μs
tHRx	Rx data hold time to sampling pulse	C _L = 100pF	2		<u> </u>	μs
f _{Tx}	Transmitter input clock frequency				f	
	1x baud rate		DC		56	kHz
	16x and 64x baud rate		DC		520	kHz
trew	Transmitter input clock pulse width 1x baud rate		10		Į	
	16x and 64x baud rate		12			tcy tcy
t _{TPD}	Transmitter input clock pulse delay					
	1x baud rate		15			tcy
	16x and 64x baud rate		3			tcy
f _{Rx}	Receiver input clock frequency					
	1x baud rate 16x and 64x baud rate		DC DC		56 520	kHz kHz
tRPW	Receiver input clock pulse width					
	1x baud rate		12	1		tcy
	16x and 64x baud rate		1			tcy
t RPD	Receiver input clock pulse delay					
	1x baud rate 16x and 64x baud rate		15 3			
t _{Tx}	TxRDY delay from center of data bit	C _L = 50pF			16	tcy tcy
t _{Rx}	RxRDY delay from center of data bit			 	20	tcy
tis	Internal SYNDET delay from center of data bit				25	tcy
tes	Internal SYNDET set-up time before falling edge of RxC				16	tcy
tTxE	TxEMPTY delay from center of data bit	C _L = 50pF			16	
twc	Control delay from rising edge of WRITE (TxE, DTR, RTS)				16	tcy
	Control to READ set up time (DSR, CTS)			ō	16	tcy tcy

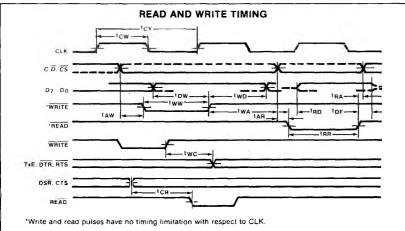
NOTES

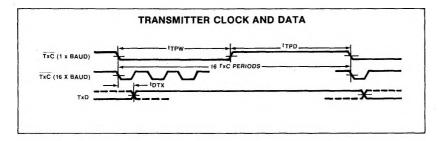
1. AC timings measured at $V_{OH} = 2.0V$, $V_{OL} = 0.8V$, and with test load circuit. 2. This recovery time is for initialization only, when MODE, SYNC1, SYNC2, COMMAND

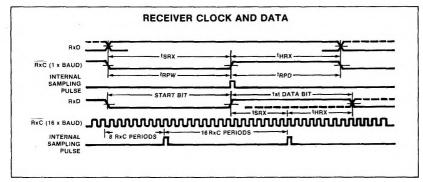
and first DATA BYTES are written into the USART. Subsequent writing of both

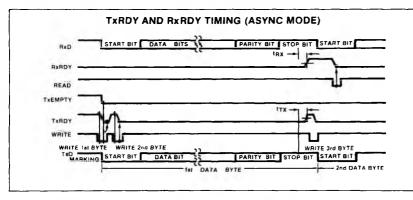
COMMAND and DATA are only allowed when TxRDY = 1.

3. The TxC and RxC frequencies have the following limitations with respect to CLK: for 1x baud rate, fTx or fRx \leq 1/30 tcv)

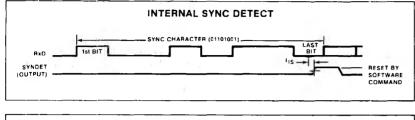

for 16x and 64x baud rate, f_{Tx} or $f_{Rx} \leq 1/4.5~t_{CY})$

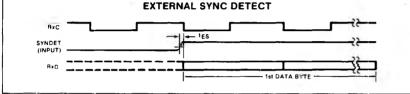



MP8251-I

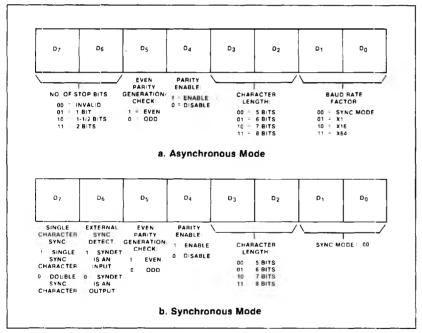

MP8251

TIMING WAVEFORMS

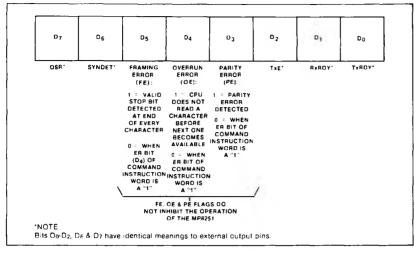




MP8251-I


MP8251

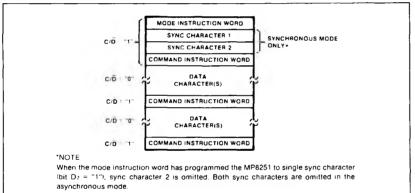
TIMING WAVEFORMS (Cont'd)


MODE INSTRUCTION CONTROL WORD FORMAT

COMMAND INSTRUCTION CONTROL WORD FORMAT

D7	D ₆	D5	D4	D3	D2	D ₁	D _D
ENTER HUNT MODE (EH)	INTERNAL RESET (IR): 1 - RETURNS	REQUEST TO SEND (RTS): 1 FORCES	ERROR RESET (ER): 1 = RESETS	SEND BREAK CHARACTER (SBRK):	RECEIVE ENABLE (RxE): 1 - ENABLE	DATA TERMINAL READY (DTR):	TRANSMIT ENABLE (TxEN):
1 - ENABLES SEARCH FOR SYNC CHARACTERS	MP 8251 TO MODE INSTRUCTION	ATS OUTPUT	PE. GE & FE ERROR FLAGS	1 FORCES TXD OUTPUT LOW 0 NORMAL OPERATION	0 = DISABLE	1 FORCES DTR OUTPUT LOW	0 DISABLI

STATUS READ WORD FORMAT


MP8251 STATUS

The MP8251 has provisions for allowing the programmer to read the status of the device at any time during the functional operation. When the C/\overline{D} input is a high-level, a normal read operation is executed to read this status information. The figure below shows the bits in the Status Read Word format. Since some of the status word bits have identical meaning to external output pins, the MP8251 can be used in a completely polled environment or in an interrupt driven environment.

MP8251

MP8251-I

TYPICAL DATA BLOCK TRANSFER

