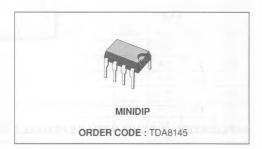
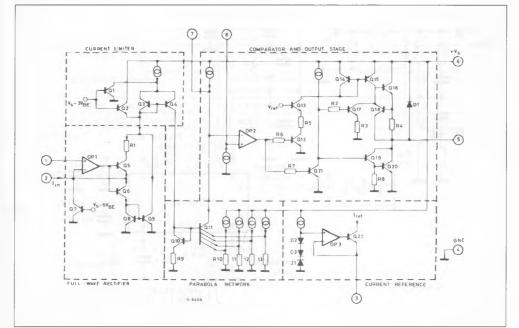
TDA8145

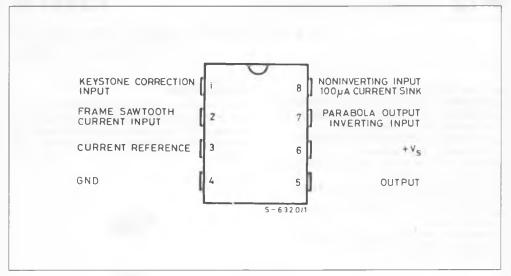
TV EAST/WEST CORRECTION CIRCUIT FOR SQUARE TUBES

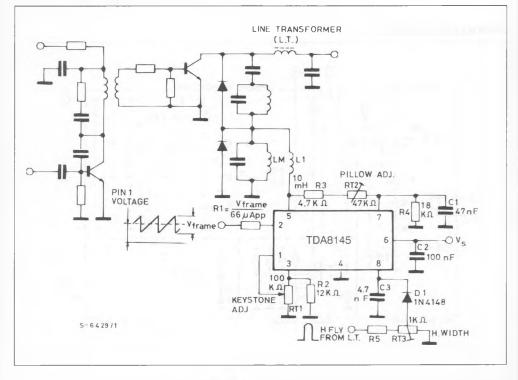

- LOW DISSIPATION
- SQUARE GENERATOR FOR PARABOLIC CURRENT SPECIALLY DESIGNED FOR SQUARE C.R.T. CORRECTION

SGS-THOMSON MICROELECTRONICS


- EXTERNAL KEYSTONE ADJUSTMENT (symmetry of the parabola)
- INPUT FOR DYNAMIC FIELD CORRECTION (beam current change)
- STATIC PICTURE WIDTH ADJUSTMENT
- PULSE-WIDTH MODULATOR
- FINAL STAGE D-CLASS WITH ENERGY REDELIVERY
- PARASITIC PARABOLA SUPPRESSION, DURING FLYBACK TIME OF THE VERTICAL SAWTOOTH

DESCRIPTION


The TDA8145 is a monolithic integrated circuit in a 8 pin minidip plastic package designed for use in the square C.R.T. east-west pin-cushion correction by driving a diode modulator in TV and monitor applications.


SCHEMATIC DIAGRAM

CONNECTION DIAGRAM (top view)

APPLICATION CIRCUIT WITH KEYSTONE CORRECTION

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	35	V
I _s	Supply Current	500	mA
Ptot	Power Dissipation at Tamb = 50 °C	500	
T _{stg} , T _j	Storage and Junction Temperature	- 25 to 150	°C

THERMAL DATA

R _{th j-case} Thermal Resistance Junction-ambient R _{th j-amb} Thermal Resistance Junction-pin 4	Max	100	°C/W
	Max	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, $V_s = 26 \text{ V}$, $V_{fr} = 0$, S1 and S2 in "a" position, refer to the test circuit unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		17	24	30	V
Is	Supply Current			4.5	7	mA
Vref	Internal Reference Voltage		7.6	8.0	8.8	V
- Iref	Internal Reference Current	V _{re1} /R3		0.73		mA
V7(A) (*)	Pin 7 Output Voltage	l _{fr} = 0 μA	15.3	16.0	16.7	V
V _{7(B)} (*)	Pin 7 Output Voltage	l _{fr} = 30 μA		15		V
К1	Parabola Coefficient (*)	$K_{1} = \frac{V_{7A} - V_{7B}}{V_{7A} - V_{7C}}$		0.26		V
K2	Parabola Coefficient (*)	$K_{2} = \frac{V_{7A} - V_{7C}}{V_{7A} - V_{7D}}$		0.70		V
ΔV ₇ (*)		$\Delta V_{\mp} = V_{7E} - V_{7F}$	- 40		40	mV
18	Current Source	$S1 \rightarrow b$		100		μA
VSATL	Saturation Voltage	$I_o = 400 \text{ mA Sink}$ S2 $\rightarrow b$		1	2	V
VSATH	Saturation Voltage	$I_o = 100 \text{ mA Source}$ S2 \rightarrow c S1 \rightarrow b		0.8	1.5	V
VF	Forward Voltage	$I_o = 400 \text{ mA} \text{ S2} \rightarrow \text{d} \text{ S1} \rightarrow \text{b}$		1.2	1.7	V
lfr	Frame Sawtooth Current	$V_{fr} = 6.6 V_{pp}$		6.6		μA

See fig.2.

TDA8145

Figure 1 : Test Circuit.

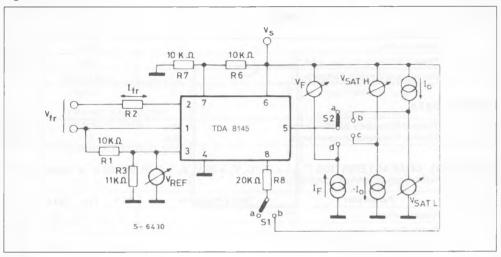
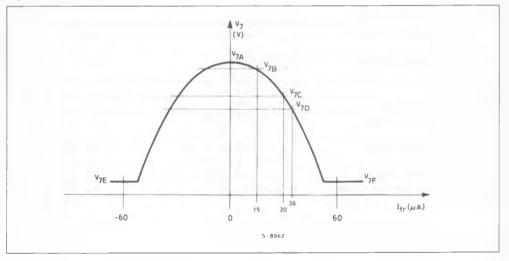



Figure 2 : Parabola Characteristics.

CIRCUIT OPERATION (see the schematic diagram).

A differential amplifier OP1 is driven by a vertical frequency sawtooth current of $\pm 33\mu$ A which is produced via an external resistor from the sawtooth voltage. The non-inverting input of this amplifier is connected with a reference voltage corresponding to the DC level of the sawtooth voltage. This DC vol tage should be adjustable for the keystone correction. The rectified output current of this amplifier drives the parabola network which provides a parabolic output current.

This output current produces the corresponding voltage due to the voltage drop across the external resistor at pin 7.

If the input is overmodulated (> 40μ A) the internal current is limited to 40μ A. This limitation can be used

for suppressing the parasitic parabolic current generated during the flyback time of the frame saw-tooth.

A comparator OP2 is driven by the parabolic current. The second input of the comparator is connected with a horizontal frequency sawtooth voltage the DC level of which can be changed by the external circuitry for the adjustment of the picture width.

The horizontal frequency pulse–width modulated output signal drives the final stage. It consists of a class D push–pull output amplifier that drives, via an external inductor, the diode modulator.