CMOS 16-bit Microcontrollers

TMP93CS42AF

1. **Outline and Device Characteristics**

The TMP93CS42A is high-speed advanced 16-bit microcontroller developed for controlling medium to large-scale equipment. The TMP93CS42A has a built-in ROM.

The TMP93CS42AF is housed in 100-pin flat package.

The device characteristics are as follows:

- (1) Original 16-bit CPU (900/L CPU)
 - TLCS-90 instruction mnemonic upward compatible
 - 16 M-byte linear address space
 - General-purpose registers and register bank system
 - 16-bit multiplication/division and bit transfer/arithmetic instructions
 - Micro DMA: 4 channels $(1.6 \mu s / 2 \text{ bytes at } 20 \text{ MHz})$
- (2) Minimum instruction execution time : 200 ns at 20 MHz
- Internal RAM: 2 Kbytes (3) Internal ROM: 64 Kbytes
- (4) External memory expansion
 - Can be expanded up to 16 M-bytes (for both programs and data).
 - Can mix 8- and 16-bit external data buses.
 - ··· Dynamic data bus sizing

(5)8-bit timer 2 channels 8-bit PWM timer 2 channels (6)16-bit timer 2 channels (7)Serial interface 2 channels (8)(9)10-bit AD converter 5 channels

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA

- making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments traffic signal instruments control instruments medical instruments. all types of transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

93CS42A-1 2001-03-13

(10)Watchdog timer (11) Chip select/wait controller : 3 blocks (12)Interrupt functions 29 • 9 CPU interrupts ······ SWI instruction, and Illegal instruction • 12 internal interrupts 7-level priority can be set. • 8 external interrupts I/O ports: (13) $80 \, \mathrm{pins}$ (14)Standby function: 4 halt modes (RUN, IDLE2, IDLE1, STOP) (15)Clock gear function • Clock can be changed fc to fc/16. (16)Operating voltage • Vcc = 4.5 to 5.5 V

(17) Package

• P-QFP100-1414-0.50

93CS42A-2 2001-03-13

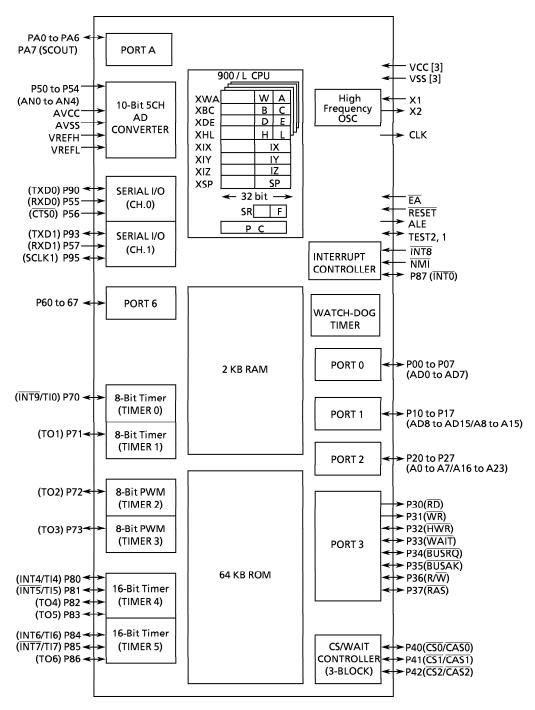


Figure 1.1 TMP93CS42A Block Diagram

2. Pin Assignment and Function

The assignment of input/output pins for the TMP93CS42A, their names and outline functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of the TMP93CS42AF.

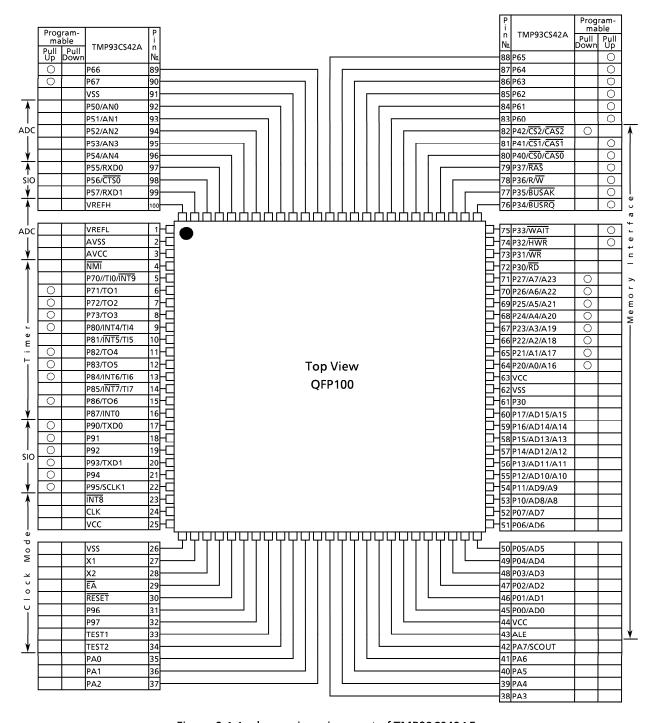


Figure 2.1.1 shows pin assignment of TMP93CS42AF.

2.2 Pin Names and Functions

Table 2.2.1 Pin Names and Functions.

Table 2.2.1 Pin Names and Functions (1/4)

Pin name	Number of pins	I/O	Function
P00 to P07 AD0 to AD7	8	I/O Tri-state	Port 0: I/O port that allows selection of I/O on a bit basis Address/data (lower): Bits 0 to 7 of address/data bus
P10 to P17 AD8 to AD15 A8 to A15	8	I/O Tri-state Output	Port 1: I/O port that allows selection of I/O on a bit basis Address data (upper): Bits 8 to 15 of address/data bus Address: Bits 8 to 15 of address bus
P20 to P27 A0 to A7 A16 to A23	8	I/O Output Output	Port 2: I/O port that allows selection of I/O on a bit basis (with pull-down resistor) Address: Bits 0 to 7 of address bus Address: Bits 16 to 23 of address bus
P30 RD	2	Output Output	Port 30: Output port. 72 pin is also used as RD, 61 pin is used only for P30. Read: Strobe signal for reading external memory
P31 WR	1	Output Output	Port 31: Output port Write: Strobe signal for writing data on pins AD0 to 7
P32 HWR	1	I/O Output	Port 32: I/O port (with pull-up resistor) High write: Strobe signal for writing data on pins AD8 to 15
P33 WAIT	1	I/O Input	Port 33: I/O port (with pull-up resistor) Wait: Pin used to request CPU bus wait
P34 BUSRQ	1	I/O Input	Port34: I/O port (with pull-up resistor) Bus request: Pin used to request bus release
P35 BUSAK	1	I/O Output	Port 35: I/O port (with pull-up resistor) Bus acknowledge: Pin used to acknowledge bus release
P36 R/W	1	I/O Output	Port 36: I/O port (with pull-up resistor) Read/write: 1 represents read or dummy cycle; 0, write cycle.
P37 RAS	1	I/O Output	Port 37: I/O port (with pull-up resistor) Row address strobe: Outputs RAS strobe for DRAM.
P40 CS0	1	I/O Output	Port 40: I/O port (with pull-up resistor) Chip select 0: Outputs 0 when address is within specified address area.
CAS0		Output	Column address strobe 0: Outputs CAS strobe for DRAM when address is within specified address area.

Note: This device's built-in memory or built-in I/O cannot be accessed with the external DMA controller using the \overline{BUSRQ} and \overline{BUSAK} signals.

Table 2.2.1 Pin Names and Functions (2/4)

Pin name	Number of pins	I/O	Function
P41 CS1 CAS1	1	I/O Output Output	Port 41: I/O port (with pull-up resistor) Chip select 1: Outputs 0 if address is within specified address area. Column address strobe 1: Outputs CAS strobe for DRAM if address is within specified address area.
P42 CS2 CAS2	1	I/O Output Output	Port 42: I/O port (with pull-down resistor) Chip select 2: Outputs 0 if address is within specified address area. Column address strobe 2: Outputs CAS strobe for DRAM if address is within specified address area.
P50 to P57 AN0 to AN4	8	Input Input	Port 5: Input port Analog input: Analog signal input for AD converter
RXD0		Input	Serial receive data 0
CTS0		Input	Serial data send enable 0 (Clear to Send)
RXD1		Input	Serial receive data 1
VREFH	1	Input	Pin for high level reference voltage input to AD converter
VREFL	1	Input	Pin for low level reference voltage input to AD converter
P60 to P67	8	I/O	Ports 60 to 67: I/O ports that allow selection of I/O on a bit basis (with pull-up resistor)
P70 TI0	1	I/O Input	Port 70: I/O port (with pull-up resistor) Timer input 0: Timer 0 input
ĪNT9		Input	Interrupt request pin 9: Interrupt request pin with falling edge. (TTL level)
P71 TO1	1	I/O Output	Port 71: I/O port (with pull-up resistor) Timer output 1: Timer 0 or 1 output
P72 TO2	1	I/O Output	Port 72: I/O port (with pull-up resistor) PWM output 2: 8-bit PWM timer 2 output
P73 TO3	1	I/O Output	Port 73: I/O port (with pull-up resistor) PWM output 3: 8-bit PWM timer 3 output
P80 TI4 INT4	1	I/O Input Input	Port 80: I/O port (with pull-up resistor) Timer input 4: Timer 4 count / capture trigger signal input Interrupt request pin 4: Interrupt request pin with programmable rising / falling edge.
P81 TI5 INT5	1	I/O Input Input	Port 81: I/O port Timer input 5: Timer 4 count / capture trigger signal input Interrupt request pin 5: Interrupt request pin with falling edge. (TTL level)
P82 TO4	1	I/O Output	Port 82: I/O port (with pull-up resistor) Timer output 4: Timer 4 output pin
P83 TO5	1	I/O Output	Port 83: I/O port (with pull-up resistor) Timer output 5: Timer 4 output pin

Table 2.2.1 Pin Names and Functions (3/4)

Pin name	Number of pins	I/O	Function
P84 TI6 INT6	1	I/O Input Input	Port 84: I/O port (with pull-up resistor) Timer input 6: Timer 5 count / capture trigger signal input Interrupt request pin 6: Interrupt request pin with programmable rising / falling edge
P85 TI7 INT7	1	I/O Input Input	Port 85: I/O port (with pull-up resistor) Timer input 7: Timer 5 count / capture trigger signal input Interrupt request pin 7: Interrupt request pin with falling edge (TTL level)
P86 TO6	1	I/O Output	Port 86: I/O port (with pull-up resistor) Timer output 6: Timer 5 output pin
P87 INT0	1	I/O Input	Port 87: I/O port (with pull-up resistor) Interrupt request pin 0: Interrupt request pin with programmable level/falling edge (TTL level)
P90 TXD0	1	I/O Input	Port 90: I/O port (with pull-up resistor) Serial send data 0
P91	1	I/O	Port 91: I/O port (with pull-up resistor)
P92	1	I/O	Port 92: I/O port (with pull-up resistor)
P93 TXD1	1	I/O Output	Port 93: I/O port (with pull-up resistor) Serial send data 1
P94	1	I/O	Port 94: I/O port (with pull-up resistor)
P95 SCLK1	1	I/O I/O	Port 95: I/O port (with pull-up resistor) Serial clock I/O 1
P96	1	I/O	Port 96: I/O port (Open Drain Output)
P97	1	I/O	Port 97: I/O port (Open Drain Output)
PA0 to PA6	7	I/O	Port A0 to A6 : I/O ports
PA7 SCOUT	1	I/O Output	Port A7: I/O port System Clock Output: Outputs f _{FPH} or f _{SYS} clock
ĪNT8	1	Input	Interrupt request pin 8 : Interrupt request pin with falling edge. (TTL level)
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with programmable falling/rising edge
CLK	1	Output	Clock output: Outputs [f _{SYS}] Clock. Pulled-up during reset. can be disabled for reducing noise.
ĒĀ	1	Input	External access: "1" should be inputted. (See Note on usage 4 in section 7.)
ALE	1	Output	Address Latch Enable (Can be disabled for reducing noise.)
RESET	1	Input	Reset: Initializes TMP93CS42A. (with pull-up resistor)
X1/X2	2	I/O	High Frequency Oscillator connecting pin
TEST1/TEST2	2	Output /Input	TEST1 Should be connected with TEST2 pin.

Table 2.2.1 Pin Names and Functions (4/4)

Pin name	Number of pins	I/O	Function
vcc	3		Power supply pin (All VCC pins are connected to the power supply source.)
VSS	3		GND pin (All VSS pins are connected with GND (0 V).)
AVCC	1		Power supply pin for AD converter
AVSS	1		GND pin for AD converter (0 V)

Note: Built-in pull-up / pull-down resistors can be released from the pins other than the \overline{RESET} pin by software.

3. Operation

This section describes the functions and basic operational blocks of the TMP93CS42A devices. See the [7]. Points of Concern and Restrictions] for the using notice and restrictions for each block.

3.1 CPU

The TMP93CS42A device has a built-in high-performance 16-bit CPU (900/L CPU). (For CPU operation, see TLCS-900/L CPU in the previous section).

This section describes CPU functions unique to the TMP93CS42A that are not described in the previous section.

3.1.1 Reset

To reset the TMP93CS42A, the \overline{RESET} input must be kept at 0 for at least 10 system clocks (Resetting initializes the clock gear to 1/16.: 16 μs at 20 MHz) within the operating voltage range and with a stable oscillation.

When reset is accepted, the CPU sets as follows:

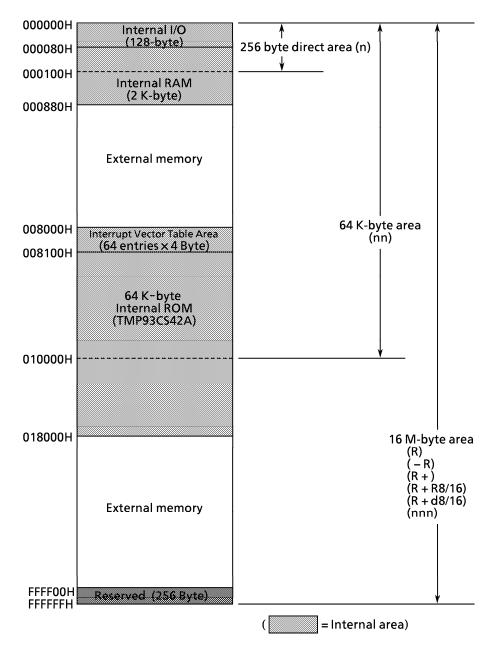
• Program Counter (PC) according to Reset Vector that is stored 8000H to 8002H.

```
\begin{array}{ll} PC (7-0) & \leftarrow \text{ stored data to } 8000 H \\ PC (15-8) & \leftarrow \text{ stored data to } 8001 H \end{array}
```

 $PC(23-16) \leftarrow stored data to 8002H$

- Stack pointer (XSP) for system mode to 100H.
- Status register <IFF2-0> to 111. (Sets mask register to interrupt level 7.)
- Status register < MAX > to 1. (Sets to maximum mode)
- Status register < REP2-0 > to 000. (Sets register banks to 0.)

When reset is released, instruction execution starts from PC (reset vector). CPU internal registers other than the above are not changed.


When reset is accepted, processing for built-in I/Os, ports, and other pins are as follows

- Initializes built-in I/O registers as per specifications.
- Sets port pins (including pins also used as built-in I/Os) to general-purpose input / output port mode.
- Watchdog timer is set to enable.
- Pulls up the CLK pin to 1.
- Sets the ALE pin to High Impeadance (High-z)
- Note 1: By resetting, register in the CPU except program counter (PC), status register (SR) and stack pointer (XSP) and the data in internal RAM are not changed.
- Note 2: The CLK pin is pulled up during reset. When the voltage is externally put down, there is possible to cause malfunctions.

Figure 3.1.1 shows the reset timing chart of TMP93CS42A.

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP93CS42A.

Note: The 256 Byte Area from FFFF00H to FFFFFFH can not be used.

Figure 3.2.1 Memory map

4. Electrical Characteristics

4.1 Absolute Maximum Ratings (TMP93CS42AF)

"X" used in an expression shows a frequency of clock f_{FPH} selected by SYSCR1<SYSCK>. If a clock gear is selected, a value of "X" is different. The value as an example is calculated at fc, gear=1/fc (SYSCR1<SYSCK, GEAR 2 to 0>= "0000").

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V _{CC}	– 0.5 to 6.5	V
Input Voltage	V _{IN}	- 0.5 to V _{CC} + 0.5	V
Output Current (total)	Σl _{OL}	120	mA
Output Current (total)	ΣΙΟΗ	- 80	mA
Power Dissipation (Ta = 85° C)	P _D	600	mW
Soldering Temperature (10 s)	T _{SOLDER}	260	°C
Storage Temperature	T _{STG}	– 65 to 150	°C
Operating Temperature	T _{OPR}	– 40 to 85	°C

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

	Parameter	Symbol	Condition	Min	Typ. (Note)	Max	Unit
1 /	er Supply Voltage AV _{CC} = V _{CC} AV _{SS} = V _{SS} = 0 V	V _{CC}	fc = 4 to 20 MHz	4.5		5.5	٧
Input Low Voltage	AD0 to 15 Port2 to A (except P87, P5) RESET,NMI EA X1 INTO, INT5, INT7, INT8, INT9	VIL VIL1 VIL2 VIL3 VIL4 VIL5	V _{CC} = 5 V ± 10%	-0.3		0.8 0.3 V _{CC} 0.25 V _{CC} 0.3 0.2 V _{CC}	V
Input High Voltage	AD0 to 15 Port2 to A (except P87) RESET, NMI EA X1 INTO, INT5, INT7, INT8, INT9	V _{IH} V _{IH1} V _{IH2} V _{IH3} V _{IH4} V _{IH5}	V _{CC} = 5 V ± 10%	2.2 0.7 V _{CC} 0.75 V _{CC} V _{CC} – 0.3 0.8 V _{CC} 2.8		V _{CC} + 0.3	•
	out Low Voltage out High Voltage	V _{OL}	I_{OL} = 1.6 mA (V_{CC} = 5 V ± 10%) I_{OH} = -400 μ A (V_{CC} = 5 V ± 10%)	4.2		0.45	v

Note: Typical values are for Ta = 25 °C and V_{CC} = 5 V unless otherwise noted.

4.2 DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ.(Note1)	Max	Unit
Darlington Drive Current (8 Output Pins Max)	I _{DAR} (Note2)	$V_{EXT} = 1.5 \text{ V}$ $R_{EXT} = 1.1 \text{ k}\Omega$ $V_{CC} = 5 \text{ V} \pm 10\%$	- 1.0		- 3.5	mA
Input Leakage Current	ILI	$0.0 \le V_{IN} \le V_{CC}$		0.02	± 5	
Output Leakage Current	I _{LO}	$0.2 \le V_{IN} \le V_{CC} - 0.2$		0.05	± 10	μA
Power Down Voltage (at STOP, RAM Back up)	V _{STOP}	$V_{IL2} = 0.2 V_{CC},$ $V_{IH2} = 0.8 V_{CC}$	2.0		6.0	<
RESET Pull Up Resister	R _{RST}	V _{CC} = 5 V ± 10%	50		150	kΩ
Pin Capacitance	C _{IO}	fc = 1 MHz			10	pF
Schmitt Width RESET, NMI	V _{TH}		0.4	1.0		٧
Programmable Pull Down Resistor	R _{KL}	V _{CC} = 5 V ± 10%	10		80	
Programmable Pull Up Resistor	R _{KH}	V _{CC} = 5 V ± 10%	50		150	kΩ
NORMAL (Note3)		$V_{CC} = 5 V \pm 10\%$		19	25	
NORMAL2 (Note4)]	fc = 20 MHz		24	30	1
RUN	laa			17	25	mA
IDLE2	lcc			10	15	1
IDLE1	1			3.5	5	1
STOP	1	V _{CC} = 5 V ± 10%		0.2	10	μ A

- Note 1: Typical values are for $Ta=25^{\circ}C$ and Vcc=5 V unless otherwise noted.
- Note 2: I_{DAR} is guaranteed for total of up to 8 ports.
- Note 3: The condition of measurement of Icc (NORMAL).

Operates only CPU, output ports are open and input ports fixed.

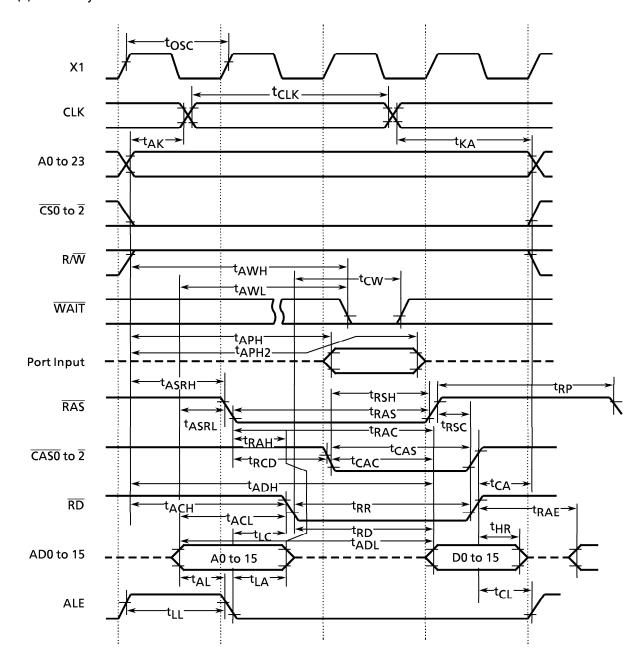
Note 4: The condition of measurement of Icc (NORMAL2).

Operates all functions, output ports are open and input port fixed.

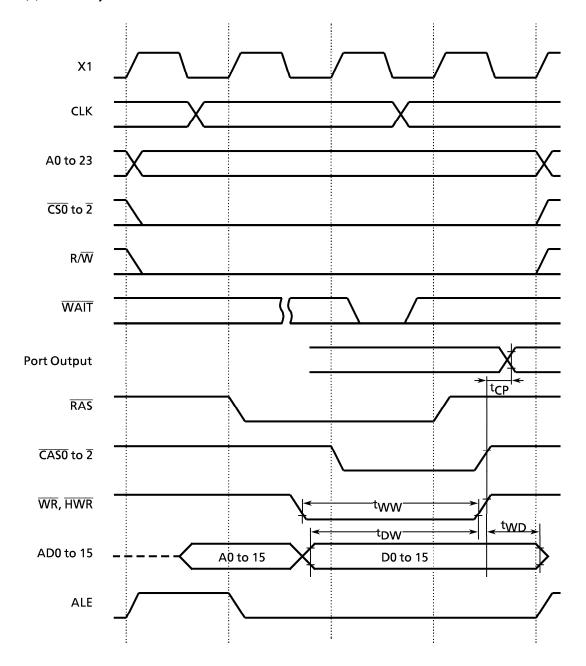
4.3 **AC Characteristics**

 $V_{CC} = 5 V \pm 10\%$

No.	Parameter	Symbol	Vari	able	16 N	/lHz	20 N	ЛHz	Unit
INO.	rarameter	Зуптвот	Min	Max	Min	Max	Min	Max	Onit
1	Osc. Period (= x)	tosc	50	31250	62.5		50		ns
2	CLK pulse width	t _{CLK}	2x - 40		85		60		ns
	A0 to 23 Valid→ CLK Hold	t _{AK}	0.5x - 20		11		5		ns
4	CLK Valid→ A0 to 23 Hold	t _{KA}	1.5x - 70		24		5		ns
5	A0 to 15 Valid→ ALE fall	t _{AL}	0.5x - 15		16		10		ns
6	ALE fall → A0 to 15 Hold	t _{LA}	0.5x - 20		11		5		ns
7	ALE High pulse width	t _{LL}	x – 40		23		10		ns
8	ALE fall → RD/WR fall	t _{LC}	0.5x - 25		6		0		ns
9	RD/WR rise → ALE rise	t _{CL}	0.5x - 20		11		5		ns
10	A0 to 15 Valid→RD/WR fall	t _{ACL}	x – 25		38		25		ns
11	A0 to 23 Valid→RD/WR fall	t _{ACH}	1.5x - 50		44		25		ns
12	RD/WR rise→ A0 to 23 Hold	tcA	0.5x - 25		6		0		ns
13	A0 to 15 Valid→ D0 to 15 input	t _{ADL}		3.0x – 55		133		95	ns
14	A0 to 23 Valid→ D0 to 15 input	t _{ADH}		3.5x – 65		154		110	ns
15	\overline{RD} fall \rightarrow D0 to 15 input	t_{RD}		2.0x – 60		65		40	ns
16	RD Low pulse width	t _{RR}	2.0x - 40		85		60		ns
17	RD rise→ D0 to 15 Hold	t_{HR}	0		0		0		ns
18	\overline{RD} rise \rightarrow A0 to 15output	t_{RAE}	x – 15		48		35		ns
19	WR Low pulse width	tww	2.0x - 40		85		60		ns
20	D0 to 15 Valid→ WR rise	t_{DW}	2.0x - 55		70		45		ns
21	WR rise →D0 to 15 Hold	t_{WD}	0.5x - 15		16		10		ns
22	A0 to 23 Valid $\rightarrow \overline{\text{WAIT}}$ input $\binom{2\text{WAIT}}{+ \text{n mode}}$	t _{AWH}		5.5x – 90		254		185	ns
23	A0 to 15 Valid $\rightarrow \overline{WAIT}$ input $\binom{2WAIT}{+ \text{n mode}}$	t _{AWL}		5.0x – 80		223		170	ns
	$\overline{RD}/\overline{WR}$ fall $\rightarrow \overline{WAIT}$ Hold $\binom{2WAIT}{+ \text{n mode}}$	tcw	4.0x + 0		250		200		ns
25	A0 to 23 Valid→ PORT input	t _{APH}		2.5x – 120		36		5	ns
26	A0 to 23 Valid→ PORT Hold	t _{APH2}	2.5x + 50		206		175		ns
27	WR rise→ PORT Valid	t _{CP}		200		200		200	ns
	A0 to 23 Valid→ RAS fall	tasrh	1.0x - 40		23		10		ns
29	A0 to 15 Valid→ RAS fall	tasrl	0.5x - 15		16		10		ns
	\overline{RAS} fall \rightarrow D0 to 15 input	t _{RAC}		2.5x – 70		86		55	ns
31	RAS fall → A0 to 15 Hold	t_{RAH}	0.5x - 15		16		10		ns
32	RAS Low pulse width	t _{RAS}	2.0x - 40		85		60		ns
33	RAS High pulse width	t _{RP}	2.0x - 40		85		60		ns
34		t _{RSH}	1.0x - 40		23		10		ns
	RAS rise → CAS rise	t _{RSC}	0.5x - 25		6		0		ns
36	RAS fall→CAS fall	t_{RCD}	1.0x - 40		23		10		ns
37	\overline{CAS} fall \rightarrow D0 to 15 input	t _{CAC}		1.5x – 65		29		10	ns
38	CAS Low pulse width	tcas	1.5x - 30		64		40		ns


AC Measuring Conditions

Output Level : High 2.2 V / Low 0.8 V, CL = 50 pF (However CL = 100 pF for AD0 to AD15, A0 to A23, ALE, RD, WR, HWR, R/W, CLK, RAS, CAS0 to CAS2)


• Input Level : High 2.4 V / Low 0.45 V (AD0 to AD15)

High $0.8 \times V_{CC} / Low 0.2 \times V_{CC}$ (Except for AD0 to AD15)

(1) Read Cycle

(2) Write Cycle

4.4 AD Conversion Characteristics

 $AV_{CC} = V_{CC}$, $AV_{SS} = V_{SS}$

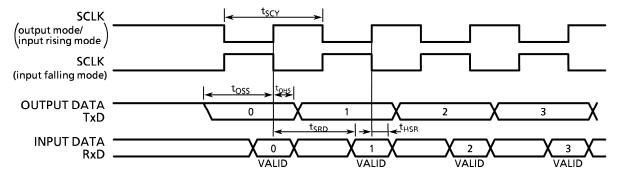
Parameter	Symbol	Power Supply	Min	Тур	Max	Unit
Analog reference voltage (+)	V _{REFH}		V _{CC} – 1.5 V	Vcc	Vcc	
Analog reference voltage (–)	V _{REFL}		Vss	V_{SS}	V _{SS} + 0.2 V	V
Analog input voltage range	V _{AIN}		V_{REFL}		V _{REFH}	
Analog current for analog reference voltage < VREFON> = 1	I _{REF} (V _{REFL} = 0 V)	$V_{CC} = 5 V \pm 10\%$		0.5	1.5	mA
<vrefon> = 0</vrefon>	(VREFL = 0 V)			0.02	5.0	μΑ
Error (excluding quantizing error)	_			± 1.0	±3.0	LSB

Note 1: $1LSB = (V_{REFH} - V_{REFL})/2^{10}$

Note 2: The operation above is guaranteed with $f_{FPH} \ge 4$ MHz.

Note 3: The value ICC includes the current which flows through AVCC pin.

4.5 Serial Channel Timing


① SCLK Input Mode

Dave meter	C. mala al	Vari	20 N	Unit		
Parameter	Symbol	Min	Max	Min	Max	Unit
SCLK cycle	t _{SCY}	16x		8.0		μS
Output Data → SCLK rising/falling timing*	t _{OSS}	t _{SCY} /2 – 5x – 50		100		ns
SCLK rising/falling timing* → Output Data hold	t _{OHS}	5x – 100		150		ns
SCLK rising/falling timing* → Input Data hold	t _{HSR}	0		0		ns
SCLK rising/falling timing* → effective data input	t _{SRD}		t _{SCY} – 5x – 100		450	ns

^{*)} SCLK rising/falling timing ··· SCLK rising in the rising mode of SCLK, SCLK falling in the falling mode of SCLK.

2 SCLK Output Mode

Parameter	Cumbal	Vari	20 N	Unit		
Parameter	Symbol	Min	Max	Min	Max	Unit
SCLK cycle (programmable)	t _{SCY}	16x	8192x	8.0	409.6	μS
Output Data \rightarrow SCLK rising edge	toss	t _{SCY} – 2x – 150		550		ns
SCLK rising edge→Output Data hold	t _{OHS}	2x - 80		20		ns
SCLK rising edge→Input Data hold	t _{HSR}	0		0		ns
SCLK rising edge→ effective data input	t _{SRD}		t _{SCY} – 2x – 150		550	ns

4.6 Timer/Counter Input Clock (TI0, TI4, TI5, TI6, TI7)

Parameter	Cala al	Vari	able	20 N	ЛHz	l l mile
Parameter	Symbol	Min	Max	Min	Max	Unit
Clock Cycle	t _{VCK}	8X + 100		500		ns
Low level clock Pulse width	t _{VCKL}	4X + 40		240		ns
High level clock Pulse width	t _{VCKH}	4X + 40		240		ns

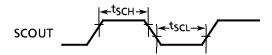
4.7 Interrupt and Capture

(1) <u>NMI</u>, <u>INTO</u>

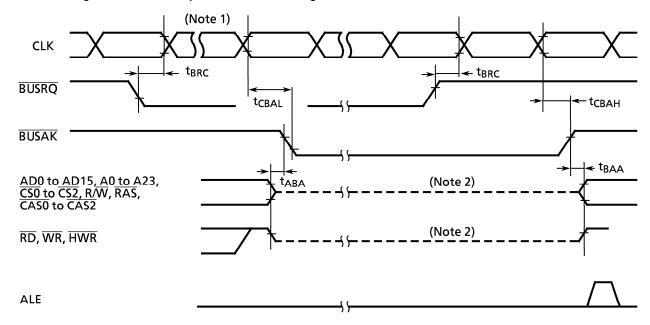
Parameter	Symbol	Vari	able	20 MHz		Unit
		Min	Max	Min	Max	Unit
NMI, INTO Low level Pulse width	t _{INTAL}	4X		200		ns
NMI, INTO High level Pulse width	t _{INTAH}	4X		200		ns

(2) INT4 to 9

INT4 to 9 input pulse width depends on the operation clock of CPU and Timer (9 bit prescaler). The following shows the pulse width for each clock.


Clock selection	t _{INTBL} (INT4 to 9 Lo	w level Pulse width)	t _{INTBH} (INT4 to 9 High level Pulse width)		
for Prescaller	Variable	20 MHz	Variable	20 MHz	Unit
<prck1, 0=""> Mir</prck1,>	Min	Min	Min	Min	
00 (f _{FPH})	8X + 100	500	8X + 100	500	ns
10(fc/16)	128X + 0.1	6.5	128X + 0.1	6.5	μS

4.8 SCOUT pin AC characteristics


Darameter	Symbol	Vari	able	20 MHz	
Parameter		Min	Max	Min	Max
High-level pulse width		0.5X-10		15	
VCC = 5V ± 10%	t _{SCH}			15	
Low-level pulse width		0.5X-10		15	
VCC = 5V ± 10%	t _{SCL}				

Measurement condition

• Output level: High 2.2 V / Low 0.8 V, CL = 10 pF

4.9 Timing Chart for Bus Request/Bus Acknowledge

Parameter	Symbol	Variable		20 MHz		Unit
		Min	Max	Min	Max	Unit
BUSRQ set-up time to CLK	t _{BRC}	120		120		ns
CLK→ BUSAK falling edge	t _{CBAL}		1.5x + 120		195	ns
CLK→ BUSAK rising edge	t _{CBAH}		0.5x + 40		65	ns
Output Buffer is off to BUSAK	t _{ABA}	0	80	0	80	ns
BUSAK to Output Buffer is on.	t _{BAA}	0	80	0	80	ns

Note 1: The Bus will be released after the \overline{WAIT} request is inactive, when the \overline{BUSRQ} is set to "0" during "Wait" cycle.

Note 2: This line only shows the output buffer is off-state.

It doesn't indicate the signal level is fixed.

Just after the bus is released, the signal level which is set before the bus is released is kept dynamically by the external capacitance. Therefore, to fix the signal level by an external resistor during bus releasing, designing is executed carefully because the level-fix will be delayed.

The internal programmable pull-up / pull-down resistor is switched active / non-active by an internal signal.