Low Power CMOS 16-bit Micro-controller

TMP93PW44ADF

1. **Outline and Device Characteristics**

The TMP93PW44A is OTP type MCU which includes 128 Kbyte One-time PROM. Using the adaptersocket, you can write and verify the data for the TMP93PW44A. The TMP93PW44ADF has the same pin-assignment as TMP93CW44 (Mask ROM type).

Writing the program to Built-in PROM, the TMP93PW44A operates as the same way as the TMP93CW44.

MCU	ROM	RAM	Package	Adapter Socket
TMP93PW44ADF	OTP 128 Kbyte	4 Kbyte	P-QFP80-1420-0.80B	BM11152

000707EBP1

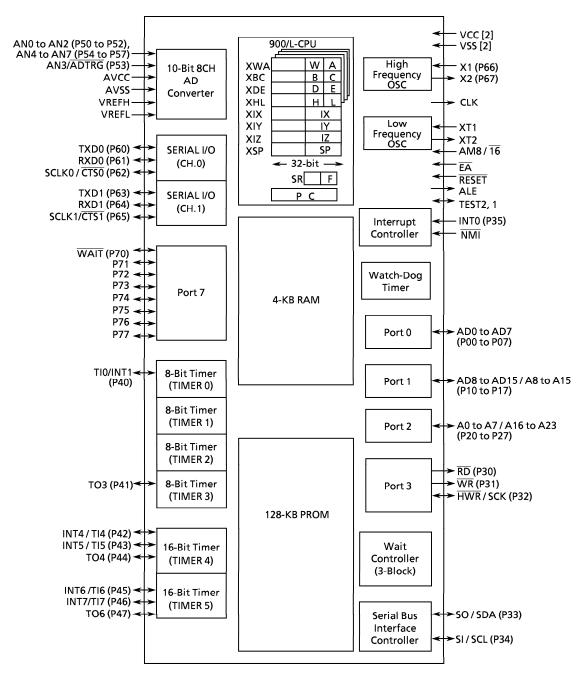
● For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

Quality and Reliability Assurance / Handling Precautions.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment office equipment measuring equipment industrial robotics domestic appliances etc.) These


- personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
- The products described in this document are subject to the foreign exchange and foreign trade laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

Purchase of TOSHIBA I2 C components conveys a license under the Philips I2 C Patent Rights to use these components in an I² C system, provided that the system conforms to the I² C Standard Specification as defined by

> 93PW44A-1 2001-03-12

Note: The items in parentheses () are the initial setting after reset.

Figure 1.1 TMP93PW44A Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins for the TMP93PW44A, their names and outline functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of the TMP93PW44ADF.

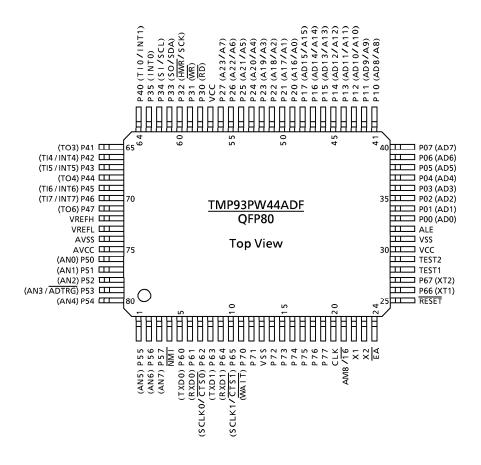


Figure 2.1.1 Pin Assignment (P-QFP80-1420-0.80B)

2.2 Pin Names and Functions

The TMP93PW44A has MCU mode and PROM mode.

(1) Table 2.2.1 shows pin function of TMP93PW44A in MCU mode.

Table 2.2.1 Pin Names and Function (1/3)

Pin name	Number of pins	I/O	Functions
P00 to P07		I/O	Port 0: I/O port that allows selection of I/O on a bit basis
/ AD0 to AD7	8	3-state	Address/data (lower): Bits 0 to 7 for address/data bus
P10 to P17		I/O	Port 1: I/O port that allows selection of I/O on a bit basis
/ AD8 to AD15	8	3-state	Address/data (upper): Bits 8 to 15 for address/data bus
/ A8 to A15		Output	Address: Bits 8 to 15 for address bus
P20 to P27		I/O	Port 2: I/O port that allows selection of I/O on a bit basis (with pull-up resistor)
/ A0 to A7	8	Output	Address: Bits 0 to 7 for address bus
/ A16 to A23		Output	Address: Bits 16 to 23 for address bus
P30	_	Output	Port 30: Output port
/ RD	1	Output	Read: Strobe signal for reading external memory
P31	_	Output	Port 31: Output port
/ WR	1	Output	Write: Strobe signal for writing data on pins AD0 to 7
P32			Port 32: I/O port (with pull-up resistor)
/ HWR	1	Output	High write: Strobe signal for writing data on pins AD8 to 15
/SCK			Mode clock SBI SIO mode clock
P33		I/O	Port 33: I/O port
/so	1		Serial Send Data
/SDA		I/O	SBI I ² C bus mode channel data
P34		I/O	Port 34: I/O port
/SI	1	Input	Serial Receive Data
/SCL		I/O	SBI I ² C bus mode clock
P35		I/O	Port 35: I/O port
/INT0	1	Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising edge
P40		I/O	Port 40: I/O port
/ TIO	1	Input	Timer input 0: Timer 0 input
/INT1		Input	Interrupt request pin 1: Interrupt request pin with rising edge
P41	4	I/O	Port 41: I/O port
/TO3	1	Output	PWM output 3: 8-bit PWM timer 3 output
P42		I/O	Port 42: I/O port
	1	Input	Timer input 4: Timer 4 count / capture trigger signal input
/TI4	'	Input	Interrupt request pin 4: Interrupt request pin with
/ INT4			programmable rising / falling edge
P43			Port 43: I/O port
/TI5	1	-	Timer input 5: Timer 4 count / capture trigger signal input
/ INT5			Interrupt request pin 5: Interrupt request pin with rising edge
P44	1	I/O	Port 44: I/O port
/TO4	'	Output	Timer output 4: Timer 4 output pin

Table 2.2.1 Pin Names and Function (2/3)

Pin name	Number of pins	I/O	Functions
P45		I/O	Port 45: I/O port
/ TI6	1 1	Input	Timer input 6: Timer 5 count / capture trigger signal input
/ INT6	' [Input	Interrupt request pin 6: Interrupt request pin with programmable
			rising / falling edge
P46			Port 46: I/O port
/TI7	1		Timer input 7: Timer 5 count / capture trigger signal input
/ INT7			Interrupt request pin 7: Interrupt request pin with rising edge
P47	1 1		Port 47: I/O port
/TO6		•	Timer output 6: Timer 5 output pin
P50 to P52,		Input	Port 50 to Port 52, Port 54 to Port 57: Input port
P54 to P57 / AN0 to AN2,	7	Innut	Analog input: Analog signal input for AD converter
AN4 to AN7		трис	Analog input. Analog signal input for AD converter
P53		Input	Port53: Input Port
/ AN3	1 1	Input	Analog input: Analog signal input for AD converter
/ ADTRG		Input	AD converter external start trigger input
P60		I/O	Port 60: I/O port (with pull-up resistor)
/TXD0	1	Output	Serial send data 0
P61		I/O	Port 61: I/O port (with pull-up resistor)
/RXD0	1		Serial receive data 0
P62		I/O	Port 62: I/O port (with pull-up resistor)
/ CTSO	1 1	Input	Serial data send enable 0 (Clear to Send)
/SCLK0		I/O	Serial Clock I/O 0
P63		I/O	Port 63: I/O port (with pull-up resistor)
/TXD1	1 1	Output	Serial send data 1
P64		I/O	Port 64: I/O port (with pull-up resistor)
/RXD1	1	Input	Serial receive data 1
P65		I/O	Port 65: I/O port (with pull-up resistor)
/CTS1	1 1	Input	Serial data send enable 1 (Clear to Send)
/SCLK1		I/O	Serial clock I/O 1
P66		I/O	Port 66: I/O port (Open Drain Output)
XT1	1 1		Low Frequency Oscillator connecting pin
P67		I/O	Port 67: I/O port (Open Drain Output)
XT2	1	Output	Low Frequency Oscillator connecting pin
		I/O	Port 70: I/O port (High current output available)
P70	1 1	Input	WAIT: Pin used to request CPU bus wait (It is active in 1 WAIT + N
/WAIT		•	mode. Set by the Bus-width / wait control register.)
P71 to P77	7	I/O	Port 71 to Port 77: I/O port (High current output available)

Table 2.2.1 Pin Names and Function (3/3)

Pin name	Number of pins	I/O	Functions
AVCC	1	Input	Power supply pin for AD converter
AVSS	1	Input	GND pin for AD converter (0 V)
VREFH	1	Input	Pin for high level reference voltage input to AD converter
VREFL	1	Input	Pin for low level reference voltage input to AD converter
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at falling and rising edges by program.
X1	1	Input	High Frequency Oscillator connecting pin
X2	1	Output	High Frequency Oscillator connecting pin
RESET	1	Input	Reset: Initializes TMP93PW44A. (With pull-up resistor)
ALE	1	Output	Address Latch Enable Can be disabled for reducing noise.
CLK	1	Output	Clock output: Outputs "f _{SYS} ÷ 2" Clock. Pulled-up during reset. Can be disabled for reducing noise.
ĒĀ	1	Input	External access: "1" should be inputted
AM8/ 16	1	Input	Address Mode: Selects external Data Bus width. "1" should be inputted. The Data Bus Width for external access is set by Chip Select / WAIT Control register, Port 1 Control register.
VCC	2	Input	Power supply pin
VSS	2	Input	GND pin (All VSS pins are connected to the GND (0 V).)
TEST1/TEST2	2	Output / Input	TEST1 Should be connected with TEST2 pin.

Note: Built-in pull-up resistors can be released from the pins other than the \overline{RESET} pin by software.

(2) PROM mode

Table 2.2.2 shows pin function of the TMP93PW44A in PROM mode.

Table 2.2.2 Pin Name and function of PROM mode

Pin function	Number of pins	Input / Output	Function	Pin name (MCU mode)			
A7 to A0	8	Input		P27 to P20			
A15 to A8	8	Input	Memory address of program	P17 to P10			
A16	1	Input		P33			
D7 to D0	8	I/O	Memory data of pfogram	P07 to P00			
CE	1	Input	Chip enable	P32			
ŌĒ	1	Input	Output control	P30			
PGM	1	Input	Program control	P31			
VPP	1	Power supply Power	12.75 V / 5 V (Power supply of program)	ĒΑ			
vcc	3	supply	6.25 V / 5 V	VCC, AVCC			
VSS	3	Power supply	0 V	VSS, AVSS			
Pin function	Number of pins	Input / Output	Disposal of pin				
P60	1	Input	Fix to low level (security pin)				
RESET	1	Input	Fix to low level (PROM mode)				
CLK	1	Input	Fix to low level (FROM Mode)				
ALE	1	Output	Open				
X1	1	Input	Self oscillation with resonator				
X2	1	Output	Sen oscillation with resolution				
P66 to P61 AM8 / 16	7	Input	Fix to high level				
TEST1/TEST2	2	Input / Output	Short				
P35, P34 P47 to P40 P57 to P50 P67 P77 to P70 VREFH VREFL NMI	30	I/O	Open				

3. Operation

This section describes the functions and basic operational blocks of the TMP93PW44A.

The TMP93PW44A has PROM in place of the mask ROM which is included in the TMP93CW44. The other configuration and functions are the same as the TMP93CW44. Regarding the function of the TMP93PW44A (not described), see the part of TMP93CW44.

The TMP93PW44A has two operational modes: MCU mode and PROM mode.

3.1 MCU mode

(1) Mode-setting and function

The MCU mode is set by opening the CLK pin (pin open). In the MCU mode, the operation is same as TMP93CW44.

(2) Memory-map

The memory map of TMP93PW44A is same as that of TMP93CW44. Figure 3.1.1 shows the memory map in MCU mode. Figure 3.1.2 show that in PROM mode.

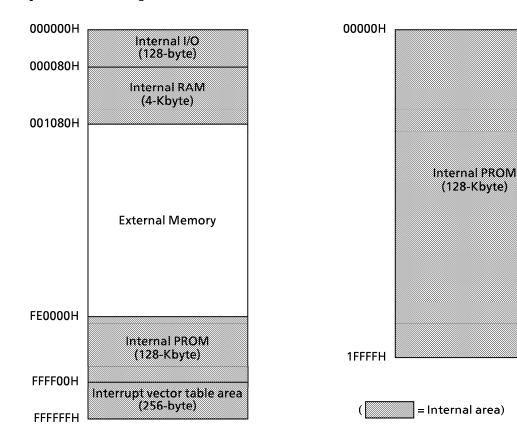


Figure 3.1.1 Memory map in MCU mode

Figure 3.1.2 Memory map in PROM mode

4. Electrical Characteristics

4.1 Absolute Maximum Ratings (TMP93PW44ADF)

"X" used in an expression shows a cycle of clock $f_{\rm FPH}$ selected by SYSCR1<SYSCK>. If a clock gear or a low speed oscillator is selected, a value of "X" is different. The value as an example is calculated at fc, gear=1/fc (SYSCR1<SYSCK, GEAR 2 to 0>="0000").

Parameter	Symbol	Ra	ating	Unit
Power Supply Voltage	Vcc	-0.	5 to 6.5	V
Input Voltage	V	except EA pin	- 0.5 to Vcc + 0.5	٧
, ,	V _{IN}	EA pin	- 0.5 to 14.0	V
Output current (Per 1 pin) P7	I _{OL1}		20	mA
Output current (Per 1 pin) except P7	I _{OL2}	2		mA
Output Current (P7 total)	Σ I _{OL1}	80		mA
Output Current (total)	ΣI_{OL}		120	mA
Output Current (total)	Σloh		- 80	mA
Power Dissipation (Ta = 85 °C)	P_{D}		350	mW
Soldering Temperature (10 s)	T _{SOLDER}		260	
Storage Temperature	T _{STG}	- 65 to 150		°C
Operating Temperature	T _{OPR}	- 4	0 to 85	${\mathbb C}$

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

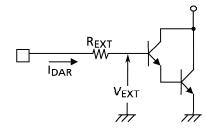
 $V_{CC} = 5 \text{ V} \pm 10\%$, $T_{a} = -40 \text{ to } 85^{\circ}\text{C}$

	Parameter	Symbol	Condition	Min	Typ. (Note)	Max	Unit
Power Supply Voltage $ \begin{pmatrix} AV_{CC} = V_{CC} \\ AV_{SS} = V_{SS} = 0 \end{pmatrix} $			fc = 4 to 20 MHz				
		Vcc	fs = 30 to 34 kHz	4.5		5.5	V
	AD0 to 15	V _{IL}				0.8	
l l	Port2 to 7 (except P35)	V _{IL1}				0.3 Vcc	
Voltage EA, AM8/1	RESET, NMI, INTO	V _{IL2}	$Vcc = 5 V \pm 10\%$	-0.3		0.25 Vcc	
	EA, AM8/16	V _{IL3}				0.3	
	X1	V _{IL4}				0.2 Vcc	
	AD0 to 15	V _{IH}		2.2			V
	Port2 to 7 (except P35)	V _{IH1}		0.7 Vcc			
Input High	RESET, NMI, INTO	V _{IH2}	$Vcc = 5 V \pm 10\%$	0.75 Vcc		Vcc + 0.3	
Voltage	EA, AM8/16	V _{IH3}		Vcc – 0.3			
	X1	V _{IH4}		0.8 Vcc			
Output Low	/ Voltage	V _{OL}	I _{OL} = 1.6 mA			0.45	V
Output Low	r current (P7)	I _{OL7}	V _{OL} = 1.0 V	16			mΑ
Output Hig	h Voltage	V _{OH}	I _{OH} = -400 μA	4.2			V

Note: Typical values are for $Ta = 25^{\circ}C$ and $V_{CC} = 5$ V unless otherwise noted.

4.2 DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ.(Note1)	Max	Unit
Darlington Drive Current (8 Output Pins Max)	I _{DAR} (Note2)	$V_{EXT} = 1.5 \text{ V}$ $R_{EXT} = 1.1 \text{ k}\Omega$	-1.0		- 3.5	mA
Input Leakage Current	ILI	$0.0 \le V_{IN} \le V_{CC}$		0.02	±5	
Output Leakage Current	I _{LO}	$0.2 \le V_{IN} \le V_{CC} - 0.2$		0.05	± 10	μA
Power Down Voltage (at STOP, RAM Back up)	V _{STOP}	$V_{IL2} = 0.2 \text{ Vcc},$ $V_{IH2} = 0.8 \text{ Vcc}$	2.0		6.0	V
RESET	D	Vcc = 5.5 V	45		130	k Ω
Pull Up Resistance	R _{RST}	Vcc = 4.5 V	50		160	K22
Pin Capacitance	C _{IO}	fc = 1 MHz			10	рF
Schmitt Width RESET, NMI, INTO	V _{TH}		0.4	1.0		٧
Programmable	D	Vcc = 5.5 V	45		130	kΩ
Pull Up Resistance	R _{KH}	Vcc = 4.5 V	50		160	1 622
NORMAL (Note3)				27	33	
RUN]	 fc = 20 MHz		22	27	mA
IDLE2	1	IC = 20 IVITIZ		16	19] ""A
IDLE1				4.2	7	1
SLOW (Note3)				85	140	
RUN	lcc	 fs = 32.768 kHz		50	100	1 ,
IDLE2	1	15 = 52.700 KHZ		35	75	μA
IDLE1	1			20	65	1
	1	Ta ≤ 50°C			10	
STOP		Ta ≦ 70°C	<u>†</u>	0.2	20	μ A
		Ta ≦ 85°C	†	1	50	1


Note 1: Typical values are for Ta = 25° C and $V_{CC} = 5$ V unless otherwise noted.

Note 2: I_{DAR} is guranteed for total of up to 8 ports.

Note 3: I_{CC} measurement conditions (NORMAL, SLOW):

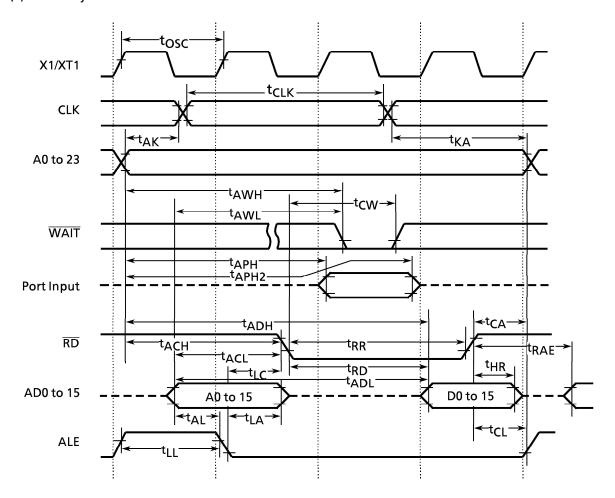
Only CPU is operational; output pins are open and input pins are fixed.

(Reference) Definition of IDAR

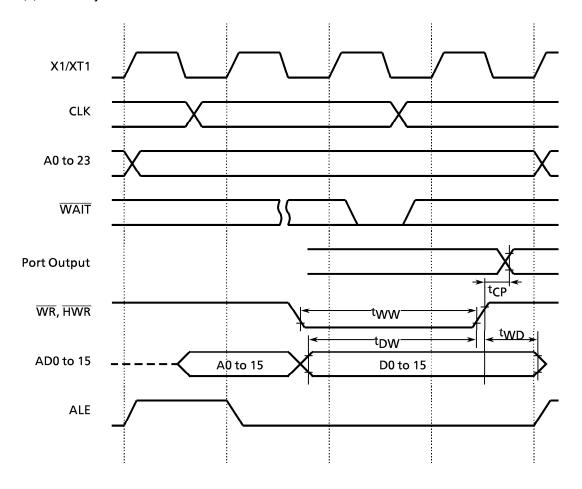
4.3 AC Electrical Characteristics

 $Vcc = 5 V \pm 10\%$

No.	Parameter	Symbol	Vari	able	16 N	ЛHz	20 N	ЛHz	Unit
INO.	raiailletei	Зуптоот	Min	Max	Min	Max	Min	Max	Unit
1	Osc. Period (=X)	tosc	50	31250	62.5		50		ns
2	CLK pulse width	t _{CLK}	2X – 40		85		60		ns
3	A0 to 23 Valid→CLK Hold	t _{AK}	0.5X - 20		11		5		ns
4	CLK Valid→ A0 to 23 Hold	t _{KA}	1.5X – 70		24		5		ns
5	A0 to 15 Valid→ ALE fall	t _{AL}	0.5X - 15		16		10		ns
6	ALE fall → A0 to 15 Hold	t_{LA}	0.5X - 20		11		5		ns
7	ALE High pulse width	t _{LL}	X – 40		23		10		ns
8	ALE fall → RD/WR fall	t_{LC}	0.5X - 25		6		0		ns
9	RD/WR rise→ ALE rise	t _{CL}	0.5X - 20		11		5		ns
10	A0 to 15 Valid→ RD/WR fall	t _{ACL}	X – 25		38		25		ns
11	A0 to 23 Valid→ RD/WR fall	t _{ACH}	1.5X - 50		44		25		ns
12	RD/WR rise→ A0 to 23 Hold	t _{CA}	0.5X - 25		6		0		ns
13	A0 to 15 Valid \rightarrow D0 to 15 input	t _{ADL}		3.0X – 55		133		95	ns
14	A0 to 23 Valid \rightarrow D0 to 15 input	t _{ADH}		3.5X – 65		154		110	ns
15	\overline{RD} fall \rightarrow D0 to 15 input	t_{RD}		2.0X – 60		65		40	ns
16	RD Low pulse width	t _{RR}	2.0X - 40		85		60		ns
17	RDrise→ D0 to 15 Hold	t _{HR}	0		0		0		ns
18	RDrise→A0 to 15output	t _{RAE}	X – 15		48		35		ns
19	WR Low pulse width	tww	2.0X - 40		85		60		ns
20	D0 to 15 Valid→WR rise	t _{DW}	2.0X - 55		70		45		ns
21	WR rise →D0 to 15 Hold	t _{WD}	0.5X - 15		16		10		ns
	A0 to 23 Valid $\rightarrow \overline{WAIT}$ input $\binom{1 \text{ WAIT}}{+ \text{ n mode}}$	t _{AWH}		3.5X – 90		129		85	ns
23	A0 to 15 Valid $\rightarrow \overline{\text{WAIT}}$ input $\binom{1 \text{ WAIT}}{+ \text{ n mode}}$	t _{AWL}		3.0X - 80		108		70	ns
24	RD/WR fall→WAIT Hold (1WAIT + n mode)	tcw	2.0X + 0		125		100		ns
25	A0 to 23 Valid→ PORT input	t _{APH}		2.5X – 120		36		5	ns
26	A0 to 23 Valid→ PORT Hold	t _{APH2}	2.5X + 50		206		175		ns
27	WR rise→ PORT Valid	t _{CP}		200		200		200	ns


AC Measuring Conditions

 Output Level: High 2.2 V / Low 0.8 V, CL = 50 pF (However CL = 100 pF for AD0 to AD15, A0 to A23, ALE, RD, WR, HWR, CLK)


• Input Level: High 2.4 V / Low 0.45 V (AD0 to AD15)

High $0.8 \times Vcc / Low 0.2 \times Vcc$ (Except for AD0 to AD15)

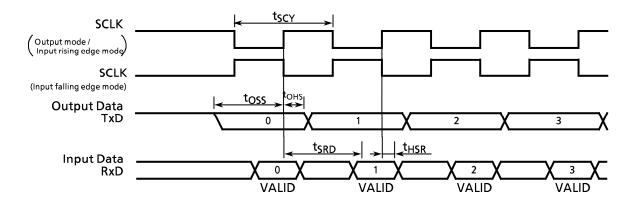
(1) Read cycle

(2) Write cycle

4.4 **Serial Channel Timing**

- I/O interface mode
 - ① SCLK input mode

Parameter	Symbol	Varia	(Note) 32.768 MHz		20 MHz		Unit	
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Onit
SCLK cycle	t _{SCY}	16X		488 μs		0.8		μS
Output Data \rightarrow falling edge of SCLK	toss	t _{SCY} /2 – 5X – 50		91.5 μs		100		ns
SCLK rising / falling edge → Output Data hold	t _{OHS}	5X – 100		152 <i>μ</i> s		150		ns
SCLK rising / falling edge → Input Data hold	t _{HSR}	0		0		0		ns
SCLK rising / falling edge → effective data input	t _{SRD}		t _{SCY} – 5X – 100		336 μs		450	ns


Note 1: When fs is used as system clock or fs divided by 4 is used as input clock to prescaler. Note 2: SCLK rising/falling timing; SCLK rising in the rising mode of SCLK,

SCLK falling in the falling mode of SCLK.

2 SCLK output mode

Parameter	Svmbol	Varia	32.768	(Note) 3 MHz	20 MHz		Unit	
rarameter	Symbol	Min	Max	Min	Max	Min	Max	Offic
SCLK cycle (Programmable)	t _{SCY}	16X	8192X	488 μs	250 ms	0.8	409.6	μS
Output Data → SCLK rising edge	toss	t _{SCY} – 2X – 150		427 μs		550		ns
SCLK rising edge→Output Data hold	t _{OHS}	2X - 80		60 μ s		20		ns
SCLK rising edge→Input Data hold	t _{HSR}	0		0		0		ns
SCLK rising edge → effective Data input	t _{SRD}		t _{SCY} – 2X – 150		428 μs		550	ns

Note: When fs is used as system clock or fs divided by 4 is used as input clock to prescaler.

UART Mode (SCLKO, 1 are external input)

Parameter	Cah al	Vari	able	32.768	kH z	20 N	/lHz	I I m la
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle	t _{SCY}	4X + 20		122 <i>μ</i> s		220		ns
SCLK Low level pulse width	t _{SCYL}	2X + 5		6 μs		105		ns
SCLK High level pulse width	t _{SCYH}	2X + 5		6 μs		105		ns

Note: When fs is used as system clock or fs divided by 4 is used as input clock to prescaler.

4.5 **AD Conversion Characteristics**

 $AV_{CC} = V_{CC}$, $AV_{SS} = V_{SS}$

Parameter	Symbol	Power Supply	Min	Тур.	Max	Unit
Analog reference voltage (+)	V_{REFH}		V _{CC} – 0.2 V	V _{CC}	V _{CC}	
Analog reference voltage (–)	V_{REFL}		V_{SS}	V_{SS}	V _{SS} + 0.2 V	V
Analog input voltage range	V_{AIN}	V _{CC} = 5 V ± 10%	V_{REFL}		V_{REFH}	
Analog current for analog reference voltage < VREFON > = 1	I _{REF}			0.5	1.5	mA
<vrefon> = 0</vrefon>	(VREFL - OV)			0.02	5.0	μA
Error (except quantization errors)	-			± 1.0	± 3.0	LSB

 $\begin{array}{ll} Note \ 1: & 1LSB = (V_{REFH} - V_{REFL}) \, / \, 2^{10} \, [V] \\ Note \ 2: & The \ operation \ above \ is \ guaranteed \ for \ f_{FPH} \geqq \ 4 \ MHz. \end{array}$

Note 3: The value I_{CC} includes the current which flows through the AVCC pin.

Event counter input clock (external input clock: TI0, TI4, TI5, TI6, TI7) 4.6

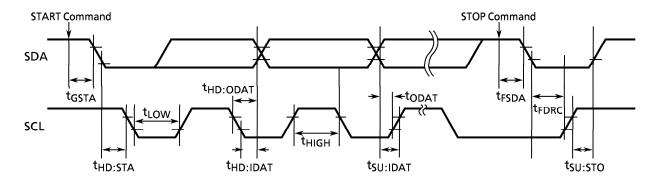
Parameter	Symbol	Variable		20 MHz		11.22
		Min	Max	Min	Max	Unit
Clock Cycle	t _{VCK}	8X + 100		500		ns
Low level clock Pulse width	t _{VCKL}	4X + 40		240		ns
High level clock Pulse width	t _{VCKH}	4X + 40		240		ns

4.7 Interrupt and capture operation

(1) NMI, INTO interrupts

Parameter	Symbol	Variable		20 MHz		Unit
		Min	Max	Min	Max	Unit
NMI, INTO Low level Pulse width	t _{INTAL}	4X		200		ns
NMI, INTO High level Pulse width	t _{INTAH}	4X		200		ns

(2) INT1, 4 to 7 interrupts and capture

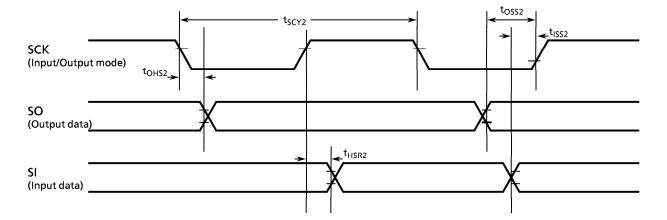

Parameter	C. made al	Variable		20 MHz		Unit
	Symbol	Min	Max	Min	Max	Unit
INT1, INT4 to INT7 Low level Pulse width	t _{INTBL}	4X + 100		300		ns
INT1, INT4 to INT7 High level Pulse width	t _{INTBH}	4X + 100		300		ns

4.8 Serial Bus Interface Timing

(1) I²C bus mode

Davameter	Cumbal		llmit.		
Parameter	Symbol	Min	Тур.	Max	Unit
START command → SDA fall	t _{GSTA}	3X			s
Hold time START condition	t _{HD} : _{STA}	2 ⁿ X			s
SCL Low level pulse width	t _{LOW}	2 ⁿ X			S
SCL High level pulse width	t _{HIGH}	2 ⁿ X + 12X			s
Data hold time (input)	t _{HD} : _{IDAT}	0			ns
Data set-up time (input)	t _{SU} : _{IDAT}	250			ns
Data hold time (output)	t _{HD} :ODAT	7X		11X	s
Data output → SCL Rising edge	t _{ODAT}		2 ⁿ X - t _{HD} : _{ODAT}		S
STOP command → SDA fall	t _{FSDA}	3X			S
SDA Falling edge → SCL Rising edge	t _{FDRC}	2 ⁿ X			S
Set-up time STOP condition	t _{SU} : _{STO}	2 ⁿ X + 16X			s

Note: "n" value is set by SBICR1 < SCK2 to 0>

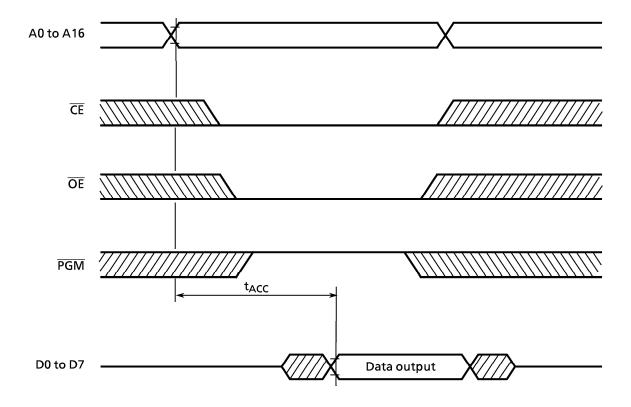

(2) Clocked-synchronous 8-bit SIO mode

① SCK input mode

Parameter	Symbol	Vari	Unit	
Parameter	Symbol	Min	Max	Unit
SCK cycle	t _{SCY2}	2⁵X		s
SCK falling edge→Output data hold	t _{OH\$2}	6X		s
Output data → SCK rising edge	t _{OSS2}	t _{SCY2} – 6X		S
SCK rising edge→Input data hold	t _{HSR2}	6X		ns
Input data→SCK rising edge	t _{ISS2}	0		ns

② SCK output mode

Parameter	Cumahal	Var	Unit	
Parameter	Symbol	Min	Max	Unit
SCK cycle	t _{SCY2}	25X	2 ¹¹ X	s
SCK falling edge → Output data hold	t _{OHS2}	2X		s
Output data→SCK rising edge	t _{OSS2}	t _{SCY2} – 2X		s
SCK rising edge→ Input data hold	t _{HSR2}	2X		s
Input data→SCK rising edge	t _{ISS2}	0		ns

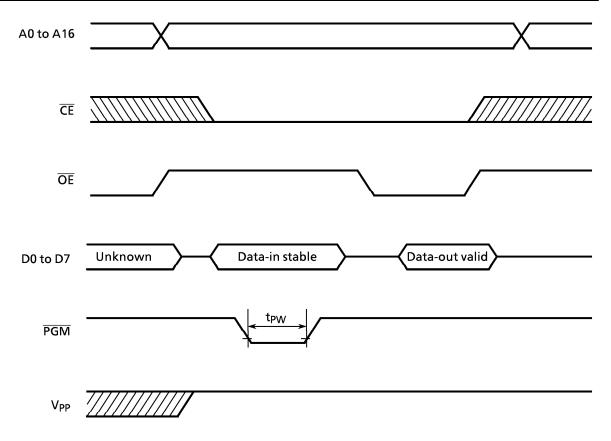

4.9 Read operation in PROM mode

DC / AC characteristics

 $Ta = 25 \pm 5$ °C $Vcc = 5 V \pm 10$ %

Parameter	Symbol	Condition	Min	Max	Unit
V _{PP} Read Voltage Input High Voltage (A0 to A16, CE, OE, PGM) Input Low Voltage (A0 to A16, CE, OE, PGM)	V _{PP} V _{IH1} V _{IL1}	1 1 1	4.5 2.2 – 0.3	5.5 V _{CC} + 0.3 0.8	> > >
Address to Output Delay	t _{ACC}	C _L = 50 _P F	_	2.25T _{CYC} + α	ns

 $T_{CYC} = 400 \text{ ns (10 MHz Clock)}$ $\alpha = 200 \text{ ns}$



4.10 Program operation in PROM mode

DC / AC characteristics

 $Ta = 25 \pm 5^{\circ}C \ Vcc = 6.25 \ V \pm 0.25 \ V$

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Programming Supply Voltage Input High Voltage (D0 to D7, A0 to A16, CE, OE, PGM)	V _{PP} V _{IH}	<u>-</u>	12.50 2.6	12.75	13.00 V _{CC} + 0.3	V V
Input Low Voltage (D0 to D7, A0 to A16, \overline{CE} , \overline{OE} , \overline{PGM})	V _{IL}	-	- 0.3		0.8	V
V _{CC} Supply Current	Icc	fc = 10 MHz	_		50	mA
V _{PP} Supply Current	Ірр	$V_{PP} = 13.00 \text{ V}$	_		50	mA
PGM Program Pulse Width	t _{PW}	C _L = 50 _P F	0.095	0.1	0.105	ms

Note1: The power supply of V_{PP} (12.75 V) must be set power-on at the same time or the later time for a power supply of V_{CC} and must be clear power-on at the same time or early time for a power supply of V_{CC} .

Note2: The pulling up/down device on condition of $V_{PP} = 12.75 \text{ V}$ suffers a damage for the device. Note3: The maximum spec of V_{PP} pin is 14.0 V. Be carefull a overshoot at the programming.

93PW44A-24