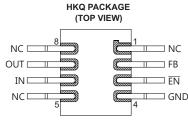


ULTRALOW-POWER 100-mA LOW DROPOUT LINEAR REGULATORS

Check for Samples: TPS76901-HT

FEATURES

- 100-mA Low-Dropout Regulator
- Available in Adjustable Versions
- Only 335-µA Quiescent Current With 100 mA at 210°C
- 1-µA Quiescent Current in Standby Mode
- Dropout Voltage Typically 71 mV at 100 mA
- Over Current Limitation


APPLICATIONS

- Down-Hole Drilling
- High Temperature Environments

DBV PACKAGE (TOP VIEW) **HKJ PACKAGE** (TOP VIEW) IN OUT NC I 8 \neg NC 1 FΒ 2 OUT 7 **GND** □ ĒΝ 3 6 ΙN 5 INC EN NC/FB GND

SUPPORTS EXTREME TEMPERATURE APPLICATIONS

- Controlled Baseline
- One Assembly/Test Site
- One Fabrication Site
- Available in Extreme (–55°C/210°C)
 Temperature Range⁽¹⁾
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability
- Texas Instruments' high temperature products utilize highly optimized silicon (die) solutions with design and process enhancements to maximize performance over extended temperatures.
- (1) Custom temperature ranges available

HKQ as formed or HKJ mounted dead bug

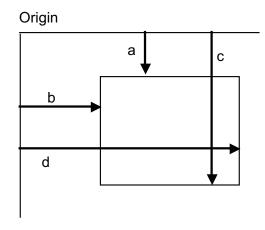
DESCRIPTION

The TPS76901 low-dropout (LDO) voltage regulator offers the benefits of low dropout voltage, ultralow-power operation, and miniaturized packaging. This regulator features low dropout voltages and ultralow quiescent current compared to conventional LDO regulators. The TPS76901 is ideal for micropower operations and where board space is at a premium.

A combination of new circuit design and process innovation has enabled the usual PNP pass transistor to be replaced by a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the dropout voltage is very low, and is directly proportional to the load current. Since the PMOS pass element is a voltage-driven device, the quiescent current is ultralow (28 μ A maximum) and is stable over the entire range of output load current (0 mA to 100 mA). Intended for use in portable systems such as laptops and cellular phones, the ultralow-dropout voltage feature and ultralow-power operation result in a significant increase in system battery operating life.

The TPS76901 also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to 1 μ A, typical at T_J = 25°C. The TPS76901 is a variable version programmable over the range of 1.2 V to 4.5 V).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

BARE DIE INFORMATION

DIE THICKNESS	BACKSIDE FINISH	BACKSIDE POTENTIAL	BOND PAD METALLIZATION COMPOSITION
15 mils.	Silicon with backgrind	GND	Al-Si-Cu (0.5%)

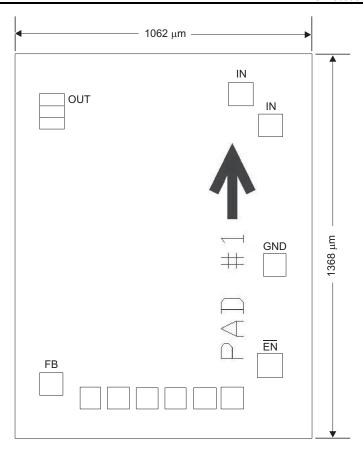
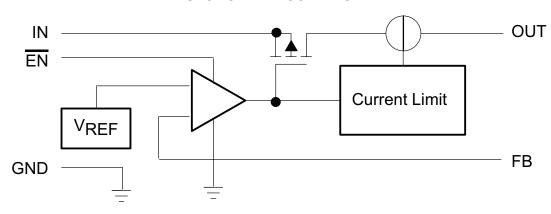


Table 1. BOND PAD COORDINATES

DESCRIPTION ⁽¹⁾	CRIPTION ⁽¹⁾ PAD NUMBER		b	С	d
IN	1	91.55	764.45	176.55	849.45
OUT	2	130.10	91.50	215.10	176.50
DNC	3	177.10	91.50	253.10	176.50
FB	4	1130.75	91.50	1215.75	176.50
DNC	5	1180.00	229.00	1256.00	305.00
DNC	6	1180.00	330.00	1256.00	406.00
DNC	7	1180.00	431.00	1256.00	507.00
DNC	8	1180.00	532.00	1256.00	608.00
DNC	9	1180.00	633.00	1256.00	709.00
DNC	10	1180.00	734.00	1256.00	810.00
EN	11	1058.50	864.50	1143.50	949.50
GND	12	700.00	881.00	785.00	966.00
IN	13	202.50	864.50	287.50	949.50

(1) DNC = Do not connect



ORDERING INFORMATION⁽¹⁾

T _A	PACKAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°c to 175°C	DBV	TPS76901HDBVT	PCFS
	KGD	TPS76901SKGD1	NA
–55°c to 210°C	HKJ	TPS76901SHKJ	TPS76901SHKJ
	HKQ	TPS76901SHKQ	TPS76901SHKQ

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.
- (2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		VALUE	UNIT
V_{REF}	Input voltage range (2)	-0.3 to 13.5	V
	Voltage range at EN	-0.3 to V _I + 0.3	V
	Voltage on OUT, FB	7	V
	Peak output current	Internally limited	
	ESD rating, HBM	2	kV
	Continuous total power dissipation	See Dissipation Ratings Table	
T_{J}	Operating virtual junction temperature range	-55 to 210	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

www.ti.com

THERMAL CHARACTERISTICS FOR DBV PACKAGE

BOARD	R ₀ JC	R _{eJA}	DERATING FACTOR ABOVE T _A = 25°C
Low K ⁽¹⁾	Low K ⁽¹⁾ 65.8 °C/W		3.9 mW/°C
High K ⁽²⁾	65.8 °C/W	180 °C/W	5.6 mW/°C

- (1) The JEDEC Low K (1s) board design used to derive this data was a 3-inch x 3-inch, two layer board with 2-ounce copper traces on top of the board.
- (2) The JEDEC High K (2s2p) board design used to derive this data was a 3-inch x 3-inch, multilayer board with 1-ounce internal power and ground planes and 2-ounce copper traces on top and bottom of the board.

THERMAL CHARACTERISTICS FOR HKJ OR HKQ PACKAGE

over operating free-air temperature range (unless otherwise noted)

	PARAME	MIN	TYP	MAX	UNIT	
θ_{JC} Junction-to-case thermal resistance	lunation to apporthermal registance	to ceramic side of case			5.7	°C/W
	Junction-to-case thermal resistance	to top of case lid (metal side of case)			13.7	C/VV

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
VI	Input votlage ⁽¹⁾	5	10	٧
Vo	Ouput voltage range	1.2	4.5	٧
Io	Continuous output current (2)	0	100	mA
TJ	Operating junction temperature	– 55	210	°C

⁽¹⁾ To calculate the minimum input voltage for your maximum output current, use the following formula: $V_I(min) = V_O(max) + V_{DO}(max load)$.

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	MIN	TYP	MAX	UNIT		
			$T_J = 25^{\circ}C$		V_{O}			
,, 0	Output voltage	101/21/21/51/	$T_J = -55^{\circ}C \text{ to } 125^{\circ}C$	0.95V _O		1.03V _O	V	
Vo	(10 µA to 100 mA load) ⁽¹⁾	$1.2 \text{ V} \le \text{V}_{\text{O}} \le 4.5 \text{ V}$	T _J = 175°C	0.84V _O		1.03V _O	V	
			T _J = 210°C	0.84V _O		1.03V _O		
		$\overline{\text{EN}} = 0 \text{ V},$ 0 mA < I _O < 100 mA	T _J = 25°C		17			
IQ	Quiescent Current (GND current) ⁽¹⁾ (2)		$T_J = -55^{\circ}C \text{ to } 125^{\circ}C$			28	μA	
	(GND current) (7)	$\overline{EN} = 4 \text{ V},$ $I_O = 100 \text{ mA}$	T _J = 175°C		23	28		
		10 = 100 11111	T _J = 210°C		335			
			$T_J = 25^{\circ}C$		12			
	Load regulation	$\overline{EN} = 0 \text{ V},$ $I_O = 0 \text{ to } 100 \text{ mA}$	T _J = 175°C		16.5		mV	
		10 = 0 10 100 11111	$T_J = 210^{\circ}C$		23.4			
			$T_J = 25^{\circ}C$		0.04			
	Output voltage line regulation	$5 \text{ V} \le \text{V}_1 \le 10 \text{ V}^{(1)}$	$T_J = -55$ °C to 125°C			0.1	%	
	$(\Delta V_O/V_O)^{(2)}$	2 A Z A Z 10 A	$T_J = 175^{\circ}C$			0.275	%	
			T _J = 210°C			0.34		
V _N	Output noise voltage	BW = 300 Hz to 50 kHz, $C_O = 10 \mu F$	T _J = 25°C		190		μVms	

⁽¹⁾ Minimum IN operating voltage is 5V. Maximum IN voltage 10 V, minimum output current 10 μA, maximum output current 100 mA.

Submit Documentation Feedback

⁽²⁾ Continuous output current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.

⁽²⁾ Line Regulation (%) = $(\Delta V_{OUT}) / (\Delta V_{IN}) \times 100$

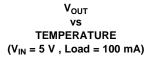
ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CON	DITIONS	MIN	TYP	MAX	UNIT	
			T _J = 25°C		350			
	Output ourrant limit	$V_{O} = 0 \ V^{(1)}$	$T_J = -55^{\circ}\text{C to } 125^{\circ}\text{C}$		750		A	
	Output current limit	$V_0 = 0 V^{(1)}$	T _J = 175°C		350	750	mA	
			T _J = 210°C		505			
			$T_J = 25^{\circ}C$		1			
	Standby ourrent	$\overline{\text{EN}} = \text{V}_{\text{I}}, 5 \text{ V} \leq \text{V}_{\text{I}} \leq 10 \text{ V}$	$T_J = -55^{\circ}C \text{ to } 125^{\circ}C$			2		
I _{STDBY}	Standby current	$EIV = V_{\parallel}, 5 \ V \leq V_{\parallel} \leq 10 \ V$	T _J = 175°C		8.8	11.85	μΑ	
			T _J = 210°C		150			
			$T_J = -55^{\circ}\text{C to } 125^{\circ}\text{C}$	-1		1		
I_{FB}	FB input current	FB = 1.224 V	T _J = 175°C		0.02		μΑ	
			T _J = 210°C		0.2			
V_{IH}	High level enable input voltage	5 V ≤ V _I ≤ 10 V	$T_J = 25^{\circ}C$	1.7			V	
			$T_J = 25^{\circ}C$			0.9	0.9 V	
V_{IL}	Low level enable input voltage	5 V ≤ V _I ≤ 10 V	T _J = 175°C		0.6			
			T _J = 210°C		0.4			
PSRR	Power supply ripple rejection	f = 1 kHz, CO = 10 μF ⁽³⁾	T _J = 25°C		60		dB	
			$T_J = 25^{\circ}C$	-1	0	1		
		EN = 0 V	T _J = 175°C		0.14			
	land amount		T _J = 210°C		3.5		μΑ	
I _{IN}	Input current		$T_J = 25^{\circ}C$	-1		1		
		$\overline{EN} = V_I$	T _J = 175°C		3.8			
			T _J = 210°C		5.5			

⁽³⁾ Minimum IN operating voltage is 5V. Maximum IN voltage 10 V, minimum output current 10 µA, maximum output current 100 mA.

DEVICE INFORMATION


TERMINAL FUNCTIONS

	TERMINAL I/O		DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
NC	1, 5, 8		No connection
FB	2	1	Feedback voltage
EN	3	1	Enable input
GND	4		Ground
IN	6	1	Input supply voltage
OUT	7	0	Regulated output voltage

Submit Documentation Feedback

TYPICAL CHARACTERISTICS

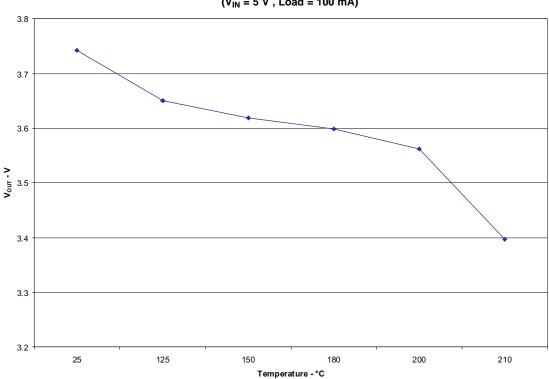


Figure 1.

OUTPUT IMPEDANCE

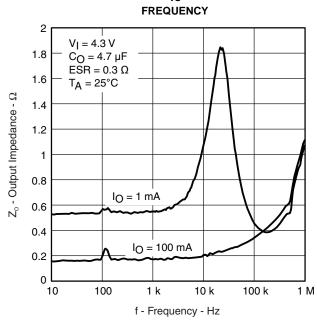


Figure 2.

TYPICAL CHARACTERISTICS (continued)

LDO STARTUP TIME

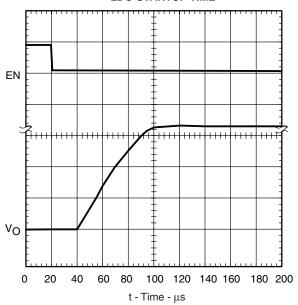
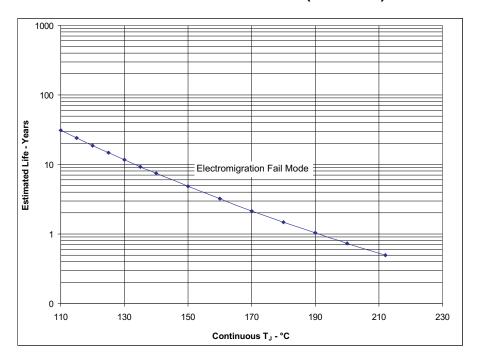
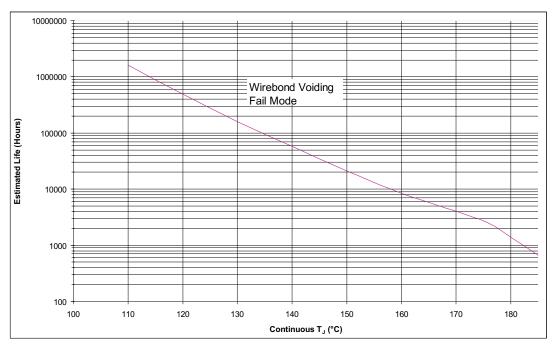



Figure 3.

TYPICAL CHARACTERISTICS (continued)


Note:

- 1. See datasheet for absolute maximum and minimum recommended operating conditions.
- Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).

Figure 4. TPS76901HDBVT / TPS76901SKGD1 / TPS76901SHKJ / TPS76901SHKQ Operating Life Derating Chart

TYPICAL CHARACTERISTICS (continued)

Note:

- 1. See datasheet for absolute maximum and minimum recommended operating conditions.
- Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).

Figure 5. TPS76901HDBVT Operating Life Derating Chart

APPLICATION INFORMATION(1)

The TPS76901 low-dropout (LDO) regulator has been optimized for use in battery-operated equipment. It features extremely low dropout voltages, low quiescent current (17 μ A nominally), and enables inputs to reduce supply currents to 1 μ A when the regulators are turned off.

DEVICE OPERATION

The TPS76901 uses a PMOS pass element to dramatically reduce both dropout voltage and supply current over more conventional PNP-pass-element LDO designs. The PMOS pass element is a voltage-controlled device and, unlike a PNP transistor, it does not require increased drive current as output current increases. Supply current in the TPS76901 is essentially constant from no load to maximum load.

Current limiting prevents damage by excessive output current. The device switches into a constant-current mode at approximately 350 mA; further load reduces the output voltage instead of increasing the output current. The PMOS pass element includes a back gate diode that conducts reverse current when the input voltage level drops below the output voltage level.

A voltage of 1.7 V or greater on the EN input will disable the TPS76901 internal circuitry, reducing the supply current to 1 μ A. A voltage of less than 0.9 V on the EN input will enable the TPS76901 and will enable normal operation to resume. The EN input does not include any deliberate hysteresis, and it exhibits an actual switching threshold of approximately 1.5 V.

A typical application circuit is shown in Figure 6.

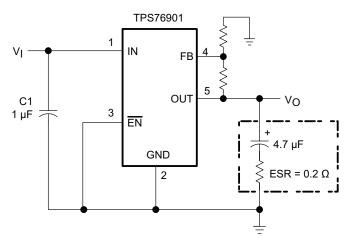


Figure 6. Typical Application Circuit

EXTERNAL CAPACITOR REQUIREMENTS

Although not required, a 0.047-µF or larger ceramic input bypass capacitor, connected between IN and GND and located close to the TPS76901, is recommended to improve transient response and noise rejection. A higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source.

Like all low dropout regulators, the TPS76901 requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance is 4.7 μ F. The ESR (equivalent series resistance) of the capacitor should be between 0.2 Ω and 10 Ω . to ensure stability. Capacitor values larger than 4.7 μ F are acceptable, and allow the use of smaller ESR values. Capacitances less than 4.7 μ F are not recommended because they require careful selection of ESR to ensure stability. Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described above. Most of the commercially available 4.7- μ F surface-mount solid tantalum capacitors, including devices from Sprague, Kemet, and Nichico, meet the ESR requirements stated above. Multilayer ceramic capacitors may have very small equivalent series resistances and may thus require the addition of a low value series resistor to ensure stability.

(1) Application information is provided for commercial temperature as a reference and not for high temperature.

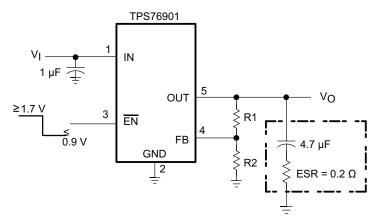
Table 2. CAPACITOR SELECTION

PART NO.	MANUFACTURER	VALUE	MAX ESR ⁽¹⁾	SIZE (H x L x W) ⁽¹⁾
T494B475K016AS	KEMET	4.7 µF	1.5 Ω	1.9 x 3.5 x 2.8
195D106x0016x2T	SPRAGUE	10 μF	1.5 Ω	1.3 x 7.0 x 2.7
695D106x003562T	SPRAGUE	10 μF	1.3 Ω	2.5 x 7.6 x 2.5
TPSC475K035R0600	AVX	4.7 µF	0.6 Ω	2.6 x 6.0 x 3.2

⁽¹⁾ Size is in mm. ESR is maximum resistance in Ohms at 100 kHz and T_A = 25°C. Contact manufacturer for minimum ESR values.

OUTPUT VOLTAGE PROGRAMMING

The output voltage of the TPS76901 adjustable regulator is programmed using an external resistor divider as shown in Figure 7. The output voltage is calculated using:


$$V_o = V_{REF} \bullet \left(1 + \frac{R1}{R2} \right) \tag{1}$$

Where:

 $V_{REF} = 1.16 \text{ V typ (the internal reference voltage)}$

Resistors R1 and R2 should be chosen for approximately 7- μ A divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2 = 169 k Ω to set the divider current at 7 μ A and then calculate R1 using:

$$RI = \left(\frac{V_O}{V_{REF}} - 1\right) \cdot R2 \tag{2}$$

Note:

1. The above calculations hold good for room temperature values only.

Figure 7. Adjustable LDO Reulator Programming

REGULATOR PROTECTION

The TPS76901 PMOS-pass transistor has a built-in back diode that conducts reverse current when the input voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage operation is anticipated, external limiting might be appropriate.

The TPS76901 features internal current limiting protection. During normal operation, the TPS76901 limits output current to approximately 350 mA. When current limiting engages, the output voltage scales back linearly until the over current condition ends.

Submit Documentation Feedback

29-Aug-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS76901HDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPS76901SHKJ	ACTIVE	CFP	HKJ	8	1	TBD	Call TI	N / A for Pkg Type	
TPS76901SHKQ	ACTIVE	CFP	HKQ	8	1	TBD	AU	N / A for Pkg Type	
TPS76901SKGD1	ACTIVE	XCEPT	KGD	0	400	TBD	Call TI	N / A for Pkg Type	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

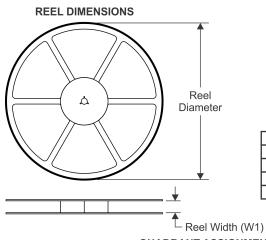
OTHER QUALIFIED VERSIONS OF TPS76901-HT:

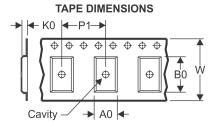
Catalog: TPS76901

www.ti.com 29-Aug-2012

• Automotive: TPS76901-Q1

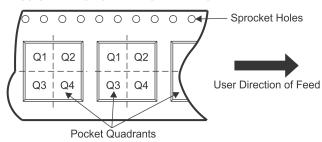
● Enhanced Product: TPS76901-EP


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 27-Sep-2012


TAPE AND REEL INFORMATION

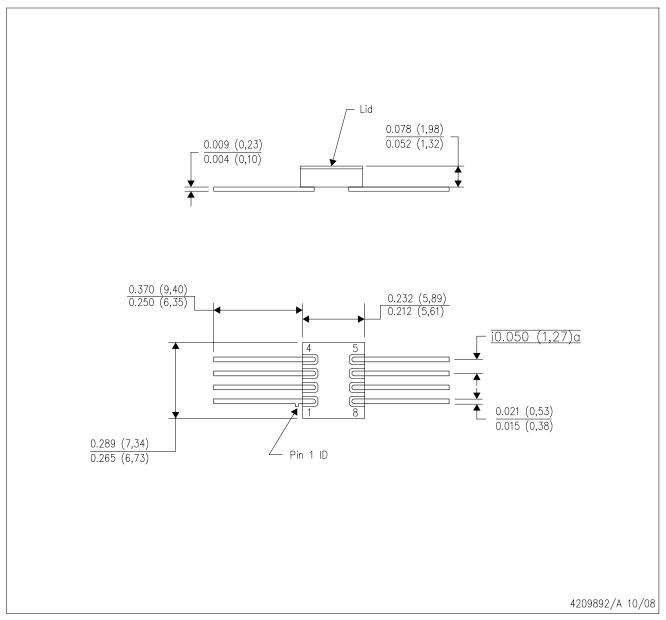
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS76901HDBVT	SOT-23	DBV	5	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

www.ti.com 27-Sep-2012

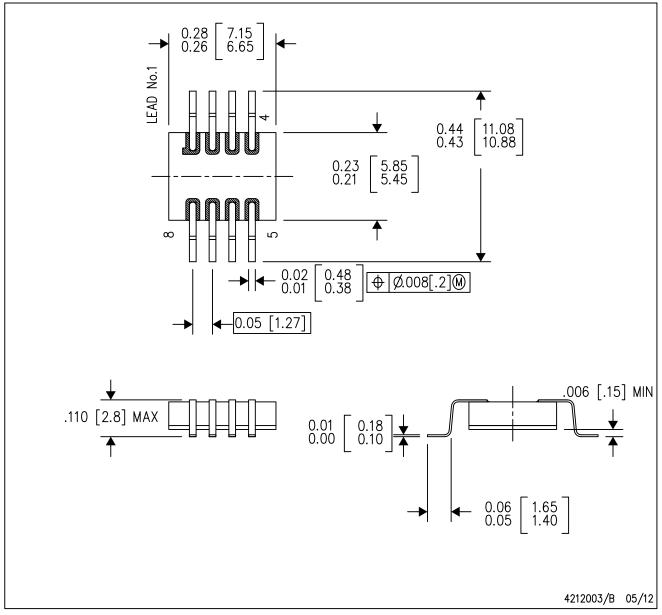


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS76901HDBVT	SOT-23	DBV	5	250	203.0	203.0	35.0	

HKJ (R-CDFP-F8)

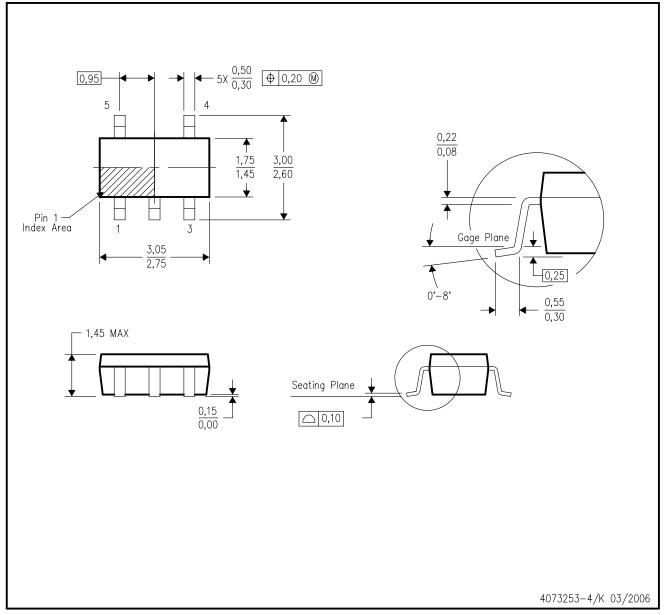
CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals will be gold plated.

HKQ (R-CDFP-G8)

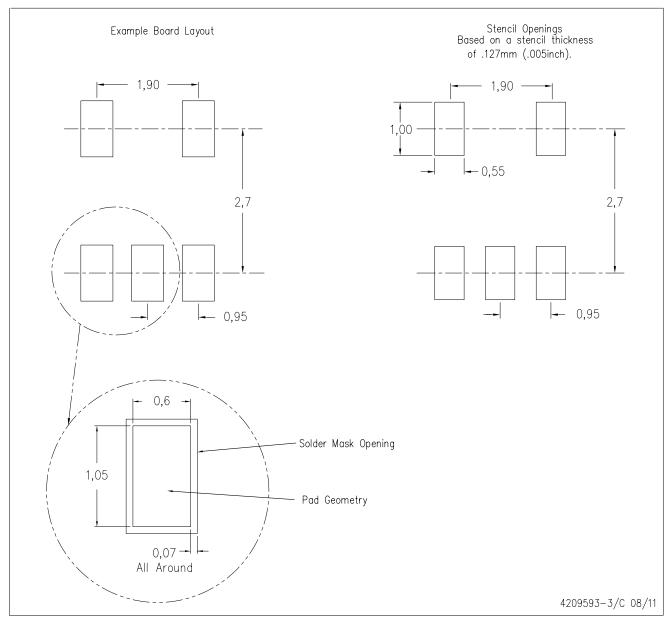
CERAMIC GULL WING



- All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- This package can be hermetically sealed with a metal lid.
- D. The terminals will be gold plated.E. Lid is not connected to any lead.

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps

DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface Medical www.ti.com/medical interface.ti.com Logic logic.ti.com Security www.ti.com/security

Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>