MOS INTEGRATED CIRCUIT μ PD78P9014

8-bit Single-Chip Microcontroller

 μ PD78P9014 is a product in the μ PD789014 Subseries of compact, general-purpose microcontrollers in the 78K/ 0S Series.

In addition to an 8-bit CPU, this product has substantial hardware such as on-chip I/O ports, timers, serial interface, and interrupt controls.

This PROM product incorporates one-time PROM that can be written only once.

Since user can write programs, this microcontroller is best suited for evaluation during development, multi-product small-volume production, and rapid start up.

These user's manuals contain detailed descriptions of the functions. Be sure to read them before designing.

$\mu\text{PD78P9014}$ Subseries User's Manual: U11187E 78K/0S Series User's Manual - Instruction: U11047E

FEATURES

- Pin compatible with mask ROM products (except for the VPP pin)
- On-chip one-time PROM: 8K bytes
- On-chip high-speed RAM: 256 bytes
- Can change the minimum instruction execution time to the fast speed (0.4 μ s) and the low speed (1.6 μ s)
- I/O ports: 22
- Serial interface: 1 channel
 Can select the three-wire serial I/O mode or the UART mode
- Timers: 3 channels
 - 8-bit timer/event counter: 2 channels
 - Watchdog timer: 1 channel
- Operation possible at the same power supply voltage as in mask ROM products (VDD = 1.8 to 5.5 V)
- Compatible with the QTOPTM microcontroller

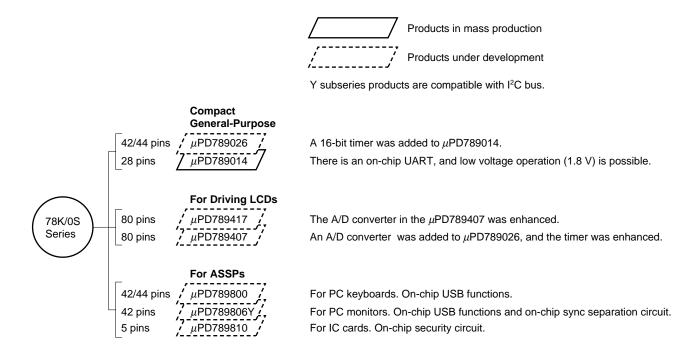
Remarks QTOP microcontroller is the name of the on-chip one-time PROM microcontroller fully supported by the NEC write service (sealing from the write, screening, inspection).

APPLICATION FIELDS

Compact household appliances, remote controls, games, etc.

ORDERING INFORMATION

Part N	umber	Package
μPD78	P9014CT	28-pin plastic shrink DIP (400 mils)
μPD78	P9014GT	28-pin plastic SOP (375 mils)


The information in this document is subject to change without notice.

OVERVIEW OF THE FEATURES

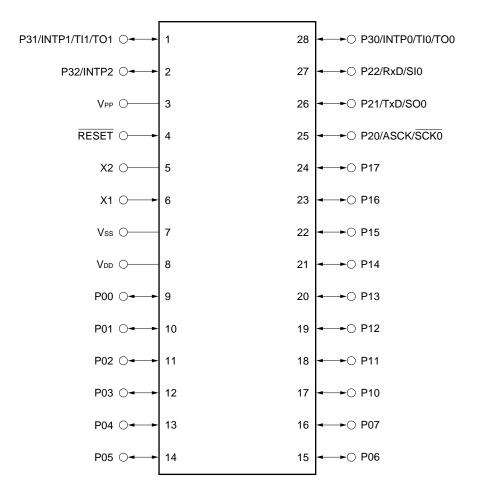
Item		Function		
On-chip memory	One-time PROM	8K bytes		
	High-speed RAM	256 bytes		
General-purpose registers		8 bits × 8 registers		
Minimum instruction execu	ition time	0.4 μ s or 1.6 μ s (main system clock: 5.0 MHz operation)		
Instruction set		16-bit calculationsBit manipulation (set, reset, test)		
I/O ports		CMOS I/O: 22		
Serial interface		Can select the three-wire serial I/O mode or the UART mode: 1 channel		
Timers		 8-bit timer/event counter: 2 channelsWatchdog timer: 1 channel		
Timer output		2		
Vector interrupt source	Maskable	Internal: 6, External: 3		
	Nonmaskable	Internal: 1		
Power supply voltage		V _{DD} = 1.8 to 5.5 V		
Ambient operating temperature		$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$		
Package		 28-pin plastic shrink DIP (400 mils) 28-pin plastic SOP (375 mils) 		

78K/0S Series Expansion

The following shows the 78K/0S Series products development. Subseries names are shown inside frames.

The following lists the main functional differences between subseries products.

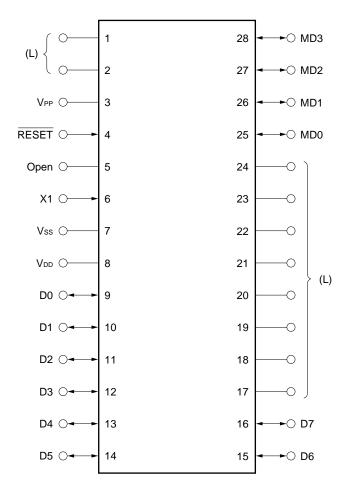
Subseries	Function	ROM		Timers			8-bit	10-bit	8-bit	Serial Interface	1/0	Minimum
Name		Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Ochar Interface	1/0	V _{DD}
Compact, general-	μPD789026	4K-16K	1ch	1ch	-	1ch	-	-	-	1ch (UART :1 ch)	34	1.8 V
purpose	μPD789014	2K-4K	2ch	_							22	
For LCD	μPD789417	12K-24K	3ch	1ch	1ch	1ch	-	7ch	-	1ch (UART : 1ch)	43	1.8 V
driving	μPD789407	12K-24K					7ch	_				
For ASSP	μPD789800	8K	2ch	_	-	1ch	-	_	-	2ch (USB : 1ch)	31	4.0 V
	μPD789806Y	16K	2ch	_	-	1ch	_	I	-	2ch (USB : 1ch, I ² C : 1ch)	20	4.5 V
	μPD789810	6K	-	_	-	1ch	-	-	-	_	1	1.8 V


CONTENTS

- 1. PIN CONNECTION DIAGRAM (Top View) ... 5
- 2. BLOCK DIAGRAM ... 7
- 3. DIFFERENCES BETWEEN THE μ PD78P9014 AND MASK ROM PRODUCTS ... 8
- 4. PIN FUNCTION LIST ... 9
 - 4.1 Pins in the Normal Operating Mode ... 9
 - 4.2 Pins in the PROM Programming Mode ... 10
 - 4.3 Pin I/O Circuit and Unused Pin Connections ... 11
- 5. MEMORY SPACE ... 12
- 6. OVERVIEW OF THE INSTRUCTION SET ... 13
 - 6.1 Legend ... 13
 - 6.2 Operation List ... 15
- 7. PROM PROGRAMMING ... 20
 - 7.1 Operating Modes ... 20
 - 7.2 PROM writing procedure ... 21
 - 7.3 PROM reading procedure ... 22
 - 7.4 One-Time PROM Product Screening ... 23
- *** 8. ELECTRICAL SPECIFICATIONS** ... 24
- * 9. CHARACTERISTIC CURVES (REFERENCE VALUES) ... 39
 - 10. PACKAGE DRAWINGS ... 40
- ***** 11. RECOMMENDED SOLDERING CONDITIONS ... 42

APPENDIX A. DEVELOPMENT TOOLS ... 43

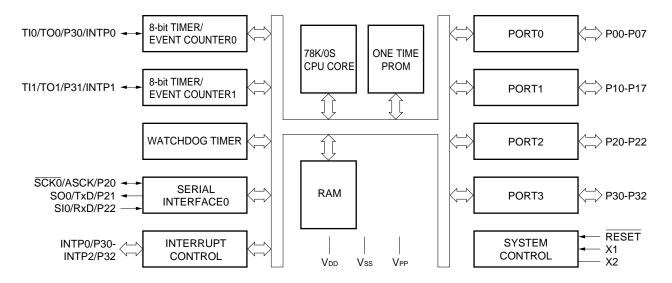
APPENDIX B. RELATED DOCUMENTS ... 44


- 1. PIN CONNECTION DIAGRAM (Top View)
- (1) Normal operating modes
 - 28-pin plastic shrink DIP (400 mils) μPD78P9014CT
 - 28-pin plastic SOP (375 mils) μPD78P9014GT

Caution Directly connect VPP to Vss.

ASCK	: Asynchronous Serial Clock	SI0	: Serial Input
INTP0-INTP2	: Interrupt from Peripherals	SO0	: Serial Output
P00-P07	: Port0	TIO, TI1	: Timer Input
P10-P17	: Port1	TO0, TO1	: Timer Output
P20-P22	: Port2	TxD	: Transmit Data
P30-P32	: Port3	Vdd	: Power Supply
RESET	: Reset	Vpp	: Programming Power Supply
RxD	: Receive Data	Vss	: Ground
SCK0	: Serial Clock	X1, X2	: Crystal

- (2) PROM programming mode
 - 28-pin plastic shrink DIP (400 mils) μPD78P9014CT
 - 28-pin plastic SOP (375 mils) μPD78P9014GT



Cautions 1. (L) : Individually connect to Vss via a pull-down resistor.

- 2. Vss : Connect to ground.
- 3. $\overline{\text{RESET}}$: Set to the low level.
- 4. Open : Leave open.

D0-D7	: Data Bus	Vdd	: Power Supply
MD0-MD3	: Programming Mode Select	Vpp	: Programming Power Supply
RESET	: Reset	Vss	: Ground
		X1	: Programming Clock Input

2. BLOCK DIAGRAM

3. DIFFERENCES BETWEEN THE $\mu \text{PD78P9014}$ AND MASK ROM PRODUCTS

 μ PD78P9014 is a product with an on-chip one-time PROM that can only be written once. Table 3-1 lists the differences between the μ PD78P9014 and mask ROM products.

Table 3-1. Differences Between the μ PD78P9014 and Mask ROM Products

Item		One-Time PROM Product	Mask ROM Products		
	eni	μPD78P9014	μPD789011	μPD789012	
On-chip memory	ROM	8K bytes	2K bytes	4K bytes	
	High-speed RAM	256 bytes	128 bytes		

4. PIN FUNCTION LIST

4.1 Pins in the Normal Operating Mode

(1) Port pins

Pin Name	I/O	Function	On Reset	Alternate Function Pin
P00-P07	I/O	Port 0 8-bit I/O port Input/output specifiable bit-wise When used as an input port, on-chip pull-up resistor can be used by software. LEDs can be directly driven.	Input	-
P10-P17	I/O	Port 1 8-bit I/O port Input/output specifiable bit-wise When used as an input port, on-chip pull-up resistor can be used by software. LEDs can be directly driven.	Input	_
P20	I/O	Port 2 3-bit I/O port	Input	ASCK/SCK0
P21		Input/output specifiable bit-wise When used as an input port, on-chip pull-up resistor can be used		TxD/SO0
P22		by software. LEDs can be directly driven.		RxD/SI0
P30	I/O	Port 3 3-bit I/O port	Input	INTP0/TI0/TO0
P31		Input/output specifiable bit-wise When used as an input port, on-chip pull-up resistor can be used		INTP1/TI1/TO1
P32		by software. LEDs can be directly driven.		INTP2

(2) Pins not in the ports

Pin Name	I/O	Function	On Reset	Alternate Function Pin
INTP0 ^{Note}	Input	External interrupt input whose valid edge can be specified (rising		P30/TI0/TO0
INTP1 ^{Note}		edge, falling edge, or both the rising and falling edges)		P31/TI1/TO1
INTP2 ^{Note}				P32
SI0 ^{Note}	Input	Serial data input in the serial interface	Input	P22/RxD
SO0	Output	Serial data output in the serial interface	Input	P21/TxD
SCK0Note	I/O	Serial clock I/O for the serial interface	Input	P20/ASCK
RxD ^{Note}	Input	Serial data input for the asynchronous serial interface	Input	P22/SI0
TxD	Output	Serial data output for the asynchronous serial interface	Input	P21/SO0
ASCK ^{Note}	Input	Serial clock input for the asynchronous serial interface	Input	P20/SCK0
TI0 ^{Note}	Input	External count clock input to the 8-bit timer (TM0)		P30/INTP0/TO0
TI1 Note		External count clock input to the 8-bit timer (TM1)		P31/INTP1/TO1
ТО0	Output	8-bit timer output	Input	P30/INTP0/TI0
TO1				P31/INTP1/TI1
RESET	Input	System reset input	Input	_
X1	Input	Crystal connection for the main system clock oscillation	-	-
X2	-		-	_
Vdd	-	Positive power supply	_	_
Vpp	_	High voltage applied when writing or verifying programs. In the normal operating mode, this is directly connected to Vss.	_	-
Vss	-	Ground potential	-	_

* Note These pins are input through Schmitt triggers. (See Type 5-D in Figure 4-1, "Pin I/O Circuit Types.")

4.2 Pins in the PROM Programming Mode

	Pin Name	I/O	Function
	RESET	Input	Connect to Vss.
	Vpp	Input	High voltage applied when setting the PROM programming mode and when writing a program or verifying.
*			If +5.5 V is applied to the V_DD pin and +12.5 V is applied to the V_PP pin, the PROM programming mode is entered.
	MD0-MD3	I/O	Select the operating mode when in the PROM programming mode.
	D0-D7	I/O	Data bus
	X1	Input	Clock input for address updating in the PROM programming mode
	Vdd	-	PROM programming mode setting and the positive power supply
	Vss	-	Ground potential

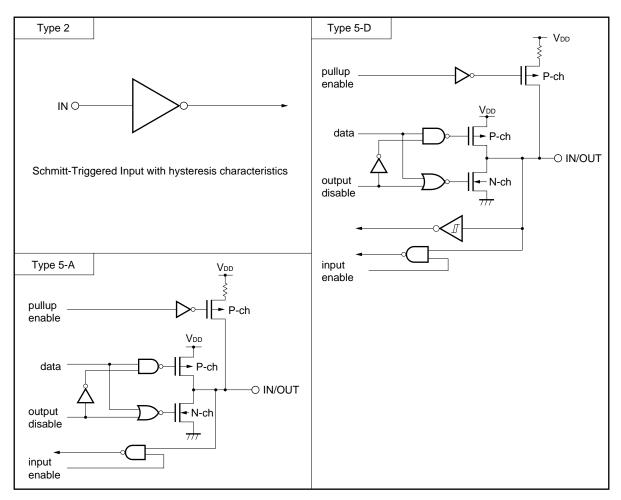

4.3 Pin I/O Circuit and Unused Pin Connections

Table 4-1 shows the types of the I/O circuits of each pin and the connections for unused pins. See Figure 4-1 for the structure of each type of I/O circuit.

Pin Name	I/O Circuit Type	I/O	Recommended Connection for Unused Pin
P00-P07	5-A	I/O	Connect to VDD or VSS through a separate resistor.
P10-P17			
P20/ASCK/SCK0	5-D		
P21/TxD/SO0	5-A]	
P22/RxD/SI0	5-D	1	
P30/INTP0/TI0/TO0			Connect to Vss through a separate resistor.
P31/INTP1/TI1/TO1			
P32/INTP2			
RESET	2	-	-
Vpp	_	-	Connect directly to Vss.

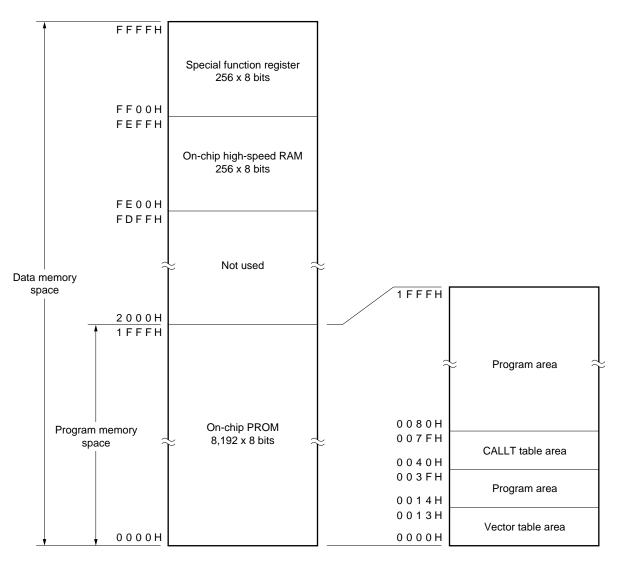

Table 4-1. Types of Pin I/O Circuits

Figure 4-1. Summary of the Pin I/O Circuits

5. MEMORY SPACE

Figure 5-1 shows the μ PD78P9014 memory map.

6. OVERVIEW OF THE INSTRUCTION SET

The μ PD78P9014 instruction set is shown in the table below.

6.1 Legend

6.1.1 Operand identifiers and methods of use

Operands are described in "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for detail). When there are two or more description methods, select one of them. Alphabetic letters in capitals and symbols, #, !, \$, and [] are keywords and must be described as they are. Each symbol has the following meaning.

 # : Immediate data specification 	• \$: Relative address specification
--	------	----------------------------------

- ! : Absolute address specification •
- [] : Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, Be sure to describe the #, !, \$, and [] symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

Identifier	Description Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special-function register symbol
saddr	FE20H-FF1FH Immediate data or labels
saddrp	FE20H-FF1FH Immediate data or labels (even addresses only)
addr16	0000H-FFFFH Immediate data or labels
	(Only even addresses in a 16-bit data transfer instructions)
addr5	0040H-007FH Immediate data or labels (even addresses only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label

Table 6-1. Operand Identifiers and Description Methods

6.1.2 Description of "Operation" column

- A : A register ; 8-bit accumulator
- Х : X register В : B register С : C register D : D register Е : E register Н : H register L : L register : AX register pair; 16-bit accumulator AX BC : BC register pair
- DE : DE register pair
- HL : HL register pair
- PC : Program counter
- SP : Stack pointer
- PSW : Program status word
- CY : Carry flag
- AC : Auxiliary carry flag
- Z : Zero flag
- IE : Interrupt request enable flag
- NMIS : Non-maskable interrupt servicing flag
- () : Memory contents indicated by the address or register contents in parentheses
- $X_{H},\,X_{L}$ $\ : \ High \ 8 \ bits \ and \ low \ 8 \ bits \ of \ a \ 16-bit \ register$
- ∧ : Logical product (AND)
- ∨ : Logical sum (OR)
- \forall : Exclusive logical sum (exclusive OR)
- ----- : Inverted data
- addr16 : 16-bit immediate data or label
- jdisp8 : signed 8-bit data (displacement value)

6.1.3 Description of "Flag Operation" column

- (Blank) : Unchanged 0 : Clear to 0.
- 1 : Set to 1.
- × : Set/cleared according to the result
- R : Previously saved value is restored.

*

6.2 Operation List

Mnemonic	Operand	Bytes	Clock	Operation		Flag	
		-			Z	AC	CY
MOV	r, #byte	3	6	r ← byte			
	saddr, #byte	3	6	(saddr) ← byte			
	sfr, #byte	3	6	$sfr \leftarrow byte$	_		
	A, r Note 1	2	4	$A \leftarrow r$			
	r, A Note 1	2	4	$r \leftarrow A$	_		
	A, saddr	2	4	$A \leftarrow (saddr)$			
	saddr, A	2	4	(saddr) ← A			-
	A, sfr	2	4	$A \leftarrow sfr$			
	sfr, A	2	4	$sfr \leftarrow A$			
	A, !addr16	3	8	$A \leftarrow (addr16)$			
	!addr16, A	3	8	$(addr16) \leftarrow A$			
	PSW, #byte	3	6	$PSW \leftarrow byte$	×	×	×
	A, PSW	2	4	$A \leftarrow PSW$			
	PSW, A	2	4	$PSW \leftarrow A$	×	×	×
	A, [DE]	1	6	$A \leftarrow (DE)$			
	[DE], A	1	6	$(DE) \leftarrow A$			
	A, [HL]	1	6	$A \leftarrow (HL)$			
	[HL], A	1	6	$(HL) \leftarrow A$			
	A, [HL + byte]	2	6	$A \leftarrow (HL + byte)$			
	[HL + byte], A	2	6	(HL + byte) ← A			
ХСН	Α, Χ	1	4	$A \leftrightarrow X$			
	A, r Note 2	2	6	$A \leftrightarrow r$			
	A, saddr	2	6	$A \leftrightarrow (saddr)$			
	A, sfr	2	6	$A \leftrightarrow (sfr)$			
	A, [DE]	1	8	$A \leftrightarrow (DE)$			
	A, [HL]	1	8	$A \leftrightarrow (HL)$			
	A, [HL + byte]	2	8	$A \leftrightarrow (HL + byte)$			
MOVW	rp, #word	3	6	$rp \leftarrow word$			
	AX, saddrp	2	6	$AX \leftarrow (saddrp)$			
	saddrp, AX	2	8	$(saddrp) \leftarrow AX$			
	AX, rp Note 3	1	4	AX ← rp			
	rp, AX Note 3	1	4	$rp \leftarrow AX$			
XCHW	AX, rp Note 3	1	8	$AX \leftrightarrow rp$			

Notes 1. Except r = A

- 2. Except r = A or X
- **3.** Only when rp = BC, DE, or HL

Remark One instruction clock cycle is one cycle of the CPU clock (fcPU) selected by the processor clock control register (PCC).

Mnemonic	Operand	Bytes	Clock	Operation		Flag	
ADD	A, #byte	2	4	A, CY \leftarrow A + byte	Z	AC ×	× CY
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) + byte	×	×	×
	A, r	2	4	$A, CY \leftarrow A + r$	×	×	X
	A, saddr	2	4	$A, CY \leftarrow A + (saddr)$	×	×	×
	A, !addr16	3	8	$A, CY \leftarrow A + (addr)$		×	×
	A, [HL]	1	6	$A, CY \leftarrow A + (HL)$	×	×	×
	A, [HL + byte]	2	6	$A, CY \leftarrow A + (HL + byte)$	×	×	×
ADDC	A, #byte	2	4	$A, CY \leftarrow A + byte + CY$	×	×	×
ADDO	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) + byte + CY	×	×	×
	Saddi, #byteS6(Saddi), C1 \leftarrow (Saddi) + byte + C1A, r24A, CY \leftarrow A + r + CY		×	×	×		
	A, saddr	2	4	$A, CY \leftarrow A + (saddr) + CY$	×	×	×
	A, !addr16	3	8	$A, CY \leftarrow A + (add1) + CY$	×	×	×
	A, [HL]	1	6	$A, CY \leftarrow A + (HL) + CY$	×	×	×
	A, [HL + byte]	2	6	$A, CY \leftarrow A + (HL) + CY$ $A, CY \leftarrow A + (HL + byte) + CY$	×	×	×
SUB	A, #byte	2	4	A, $CY \leftarrow A - byte$	×	×	×
000	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) – byte	×	×	×
	A, r	2	4	A, $CY \leftarrow A - r$	×	×	×
	A, saddr	2	4	$A, CY \leftarrow A - (saddr)$	×	×	×
	A, laddr16	3	8	$A, CY \leftarrow A - (addr)^{2}$	×	×	X
	A, [HL]	1	6	$A, CY \leftarrow A - (HL)$	×	×	×
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte)$	×	×	X
SUBC	A, #byte	2	4	$A, CY \leftarrow A - byte - CY$	×	×	×
0020	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) – byte – CY	×	×	×
	A, r	2	4	$A, CY \leftarrow A - r - CY$	×	×	×
	A, saddr	2	4	$A, CY \leftarrow A - (saddr) - CY$	×	×	×
	A, !addr16	3	8	$A, CY \leftarrow A - (addr16) - CY$	×	×	×
	A, [HL]	1	6	$A, CY \leftarrow A - (HL) - CY$	×	×	×
	A, [HL + byte]	2	6	A, $CY \leftarrow A - (HL + byte) - CY$	×	×	×
AND	A, #byte	2	4	$A \leftarrow A \land byte$	×		
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \land byte$	×		
	A, r	2	4	$A \leftarrow A \land r$	×		
	A, saddr	2	4	$A \leftarrow A \land (saddr)$	×		
	A, !addr16	3	8	$A \leftarrow A \land (addr16)$	×		
	A, [HL]	1	6	$A \leftarrow A \land (HL)$	×		
	A, [HL + byte]	2	6	$A \leftarrow A \land (HL + byte)$	×		

Mnemonic	Operand	Bytes	Clock	Operation		Flags	
		-		-		AC	CY
OR	A, #byte	2	4	$A \leftarrow A \lor$ byte	×		
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×		
	A, r	2	4	$A \leftarrow A \lor r$	×		
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×		
	A, !addr16	3	8	$A \leftarrow A \lor$ (addr16)	×		
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×		
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×		
XOR	A, #byte	2	4	$A \leftarrow A \forall byte$	×		
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \forall byte$	×		
	A, r	2	4	$A \leftarrow A \forall r$	×		
	A, saddr	2	4	$A \leftarrow A \forall$ (saddr)	×		
	A, !addr16	3	8	$A \leftarrow A \forall$ (addr16)	×		
	A, [HL]	1	6	$A \leftarrow A \forall (HL)$	×		
	A, [HL + byte]	2	6	$A \leftarrow A \forall$ (HL + byte)	×		
CMP	A, #byte	2	4	A – byte	×	×	×
	saddr, #byte	3	6	(saddr) – byte	×	×	×
	A, r	2	4	A – r	×	×	×
	A, saddr	2	4	A – (saddr)	×	×	×
	A, !addr16	3	8	A – (addr16)	×	×	×
	A, [HL]	1	6	A – (HL)	×	×	Х
	A, [HL + byte]	2	6	A – (HL + byte)	×	×	Х
ADDW	AX, #word	3	6	AX, CY \leftarrow AX + word	×	×	×
SUBW	AX, #word	3	6	AX, CY \leftarrow AX – word	×	×	×
CMPW	AX, #word	3	6	AX – word	×	×	×
INC	r	2	4	r ← r + 1	×	×	
	saddr	2	4	$(saddr) \leftarrow (saddr) + 1$	×	×	
DEC	r	2	4	r ← r + 1	×	×	
	saddr	2	4	$(saddr) \leftarrow (saddr) - 1$	×	×	
INCW	rp	1	4	$rp \leftarrow rp + 1$			
DECW	rp	1	4	$rp \leftarrow rp - 1$			
ROR	A, 1	1	2	$(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$			×
ROL	A, 1	1	2	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$			×
RORC	A, 1	1	2	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1$			×
ROLC	A, 1	1	2	$(CY \leftarrow A7, A0 \leftarrow CY, Am+1 \leftarrow Am) \times 1$			×

Mnemonic	Operand	Bytes	Clock	Operation		Flag	
	oporana				Z	AC	CY
SET1	saddr. bit	3	6	(saddr. bit) ← 1			
	sfr. bit	3	6	sfr. bit $\leftarrow 1$			
	A. bit	2	4	A. bit ← 1			
	PSW. bit	3	6	PSW. bit $\leftarrow 1$	×	×	×
	[HL]. bit	2	10	(HL). bit $\leftarrow 1$			
CLR1	saddr. bit	3	6	(saddr. bit) $\leftarrow 0$			
	sfr. bit	3	6	sfr. bit $\leftarrow 0$			
	A. bit	2	4	A. bit $\leftarrow 0$			
	PSW. bit	3	6	PSW. bit $\leftarrow 0$	×	×	×
	[HL]. bit	2	10	(HL). bit $\leftarrow 0$			
SET1	CY	1	2	CY ← 1			1
CLR1	CY	1	2	$CY \leftarrow 0$			0
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$			×
CALL	!addr16	3	6	$(SP-1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$ $PC \leftarrow addr16, SP \leftarrow SP - 2$			
CALLT	[addr5]	1	8	$\begin{split} (SP-1) &\leftarrow (PC + 1)_{H}, (SP - 2) \leftarrow (PC + 1)_{L}, \\ PC_{H} &\leftarrow (00000000, addr5 + 1), \\ PC_{L} &\leftarrow (00000000, addr5), \\ SP &\leftarrow SP - 2 \end{split}$			
RET		1	6	$PC_{H} \leftarrow (SP+1), PC_{L} \leftarrow (SP), SP \leftarrow SP+2$			
RETI		1	8	PC _H ← (SP + 1), PC _L ← (SP), PSW ← (SP + 2), SP ← SP + 3, NMIS ← 0	R	R	R
PUSH	PSW	1	2	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$			
	rp	1	4	$(SP - 1) \leftarrow rp_H, (SP - 2) \leftarrow rp_L, SP \leftarrow SP - 2$			
POP	PSW	1	4	$PSW \leftarrow (SP), SP \leftarrow SP + 1$	R	R	R
	rp	1	6	$rp_{H} \leftarrow (SP + 1), rp_{L} \leftarrow (SP), SP \leftarrow SP + 2$			
MOVW	SP, AX	2	8	$SP \leftarrow AX$			
	AX, SP	2	6	$AX \leftarrow SP$			
BR	!addr16	3	6	$PC \leftarrow addr16$			
	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$			
	AX	1	6	$PCH \leftarrow A, PCL \leftarrow X$	+		

Masaasia	Onerend	Durtaa	Clask	Oreartier	Flags		
Mnemonic	Operand	Bytes	Clock	Operation	Z AC CY		
BC	\$saddr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$			
BNC	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$			
BZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 1$			
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$			
BT	saddr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$			
				if (saddr. bit) = 1			
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 1			
	A. bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 1			
	PSW. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 1			
BF	saddr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$			
				if (saddr. bit) = 0			
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 0			
	A. bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 0			
	PSW. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 0			
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then			
				$PC \leftarrow PC + 2 + jdisp8$ if $B \neq 0$			
	C, \$addr16	2	6	$C \leftarrow C - 1$, then			
				$PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$			
	saddr, \$addr16	3	8	$(saddr) \leftarrow (saddr) - 1$, then			
				$PC \leftarrow PC + 3 + jdisp8 \text{ if } (saddr) \neq 0$			
NOP		1	2	No Operation			
EI		3	6	$IE \leftarrow 1$ (Enable Interrupt)			
DI		3	6	$IE \leftarrow 0$ (Disable Interrupt)			
HALT		1	2	Set HALT Mode			
STOP		1	2	Set STOP Mode			

7. PROM PROGRAMMING

The program memory in μ PD78P9014 is an 8K-byte one-time PROM that can be written electrically. The pins listed in Table 7-1 are used to write or verify this one-time PROM. For the connections for unused pins, see to "(2) PROM programming mode" in section 1, "Pin Connection Diagram (Top View)." The method updates the address by the clock input from the X1 pin and not the address input.

Pin Name	Function
Vpp	High voltage pin for setting the PROM programming mode and writing or verifying a program (usually, the V_{DD} potential)
MD0-MD3	Operating mode selection pin when writing or verifying a program
D0-D7	Data bus
X1	Address update clock input when writing or verifying a program
★ Vdd	Pin for setting the PROM programming mode and applying the power supply voltage. In the normal operating mode, 1.8 to 5.5 V are applied. In the PROM programming mode, +5.5 V are applied.

Table 7-1. Pins in the PROM Programming Mode

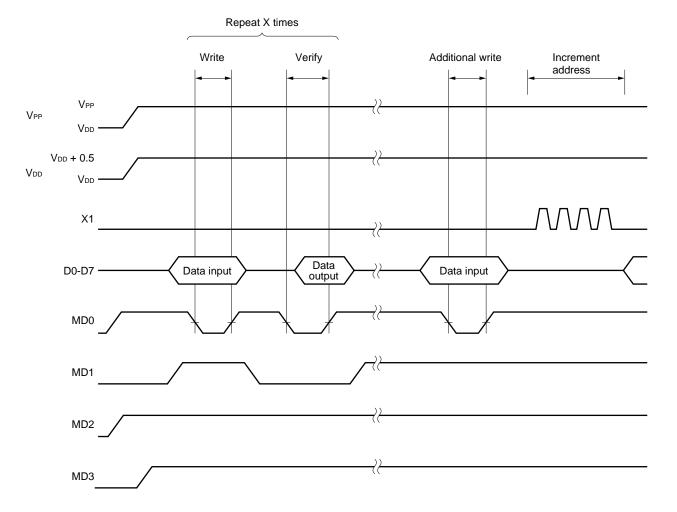
7.1 Operating Modes

If +5.5 V is applied to the V_{DD} pin and +12.5 V is applied to V_{PP} pin, the PROM programming mode is entered. This mode becomes an operating mode in Table 7-2 based on the settings of the MD0 to MD3 pins.

Table 7-2.	Operating	Modes in	PROM	Programming
------------	-----------	----------	------	-------------

	Pins Operating Mode	Vpp	Vdd	MD0	MD1	MD2	MD3
*	Zero clear of the program memory address	+12.5	+5.5	н	L	Н	L
	Write mode			L	Н	Н	Н
	Verify mode			L	L	Н	Н
	Program inhibit mode			Н	×	Н	Н

 $\mathsf{X}:\mathsf{L} \text{ or }\mathsf{H}$

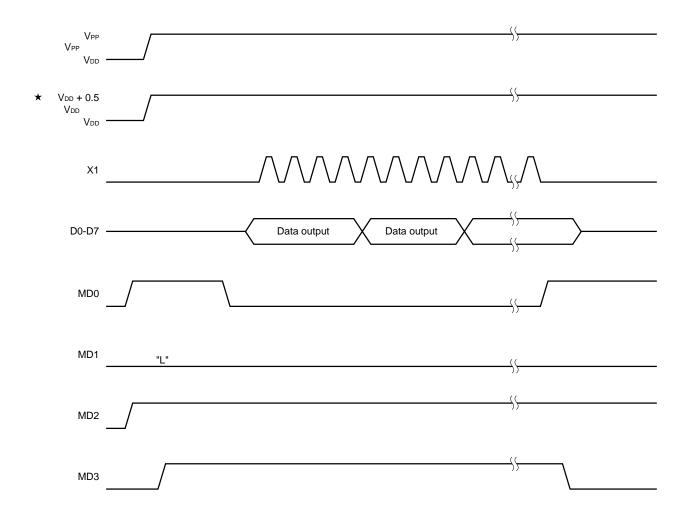

*

7.2 PROM writing procedure

The following is the PROM writing procedure. High-speed writing is enabled.

- (1) Pull down each unused pin through a resistor to Vss. The X1 pin has the low level.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Wait 10 μs.
- (4) 0 clear mode in the program memory address
- (5) Supply 5.5 V to the V_DD pin and 12.5 V to the V_PP pin.
- (6) Write data in the 1-ms write mode.
- (7) Verify mode. If written, go to (8). If not written, repeat (6) and (7).
- (8) Additional write for (Counts written in (6) and (7): X) \times 1 ms
- (9) Update (+1) the program memory address by the input of four pulses at the X1 pin.
- (10) Repeat (6) to (9) until the last address.
- (11) 0 clear mode of the program memory address
- (12) Change the voltages at the VDD and VPP pins to 5 V.
- (13) Power off

Steps (2) to (9) are illustrated in the following diagram.



7.3 PROM reading procedure

The following is the PROM reading procedure.

- (1) Pull down each unused pin through the resistor to Vss. The X1 pin has the low level.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Wait 10 μs.
- (4) 0 clear mode in the program memory address
- ★ (5) Supply +5.5V to V_{DD} and +12.5 V to V_{PP}.
 - (6) Verify mode. When clock pulses are input to the X1 pin, the data are sequentially output for each address for a period of four clock pulses.
 - (7) 0 clear mode in the program memory address
 - (8) Supply +5 V to the VDD and VPP pins.
 - (9) Power off

Steps (2) to (7) are shown in the figure below.

7.4 One-Time PROM Product Screening

The one-time PROM product cannot be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the following conditions.

Storage Temperature	Storage Time
125 °C	24 hours

*

NEC provides a fee-based, one-time microprocessor PROM writing, marking, screening, and verifying service called QTOP. For details, contact your NEC distributor.

★ 8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Test Condition	ons	Rating	Unit
Supply voltages	Vdd			-0.3 to + 7.0	V
	Vpp			-0.3 to + 13.5	V
Input voltage	Vı			-0.3 to V _{DD} + 0.3	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Output current, high	I _{OH} Note	1 pin	Peak value	-10	mA
			r.m.s.	-5	mA
		Total of all pins	Peak value	-30	mA
			r.m.s.	-15	mA
Output current, low	_{OL} Note	1 pin	Peak value	30	mA
			r.m.s.	15	mA
		Total of all pins	Peak value	160	mA
			r.m.s.	80	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Note r.m.s. should be calculated as follows [r.m.s.] = [peak value] $\times \sqrt{duty}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even an single parameter or even momentarily. That is, the absolute maximum ratings are the rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Remark The characteristics of an alternate function pin and a port pin are the same unless specified otherwise.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

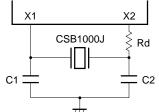
Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz, Unmeasured pins returned to 0 V			15	pF
Output capacitance	Соит				15	pF
I/O capacitance	Сю				15	pF

Resonator	Recommended Circuit	Parameter	Test Condition	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2	Oscillator frequency (fx) ^{Note 1}	VDD = Oscillating voltage range	1.0		5.0	MHz
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillator voltage range MIN.			4	ms
Crystal resonator	X1 X2	Oscillating frequency (fx)Note 1		1.0		5.0	MHz
		Oscillation stabilization	V _{DD} = 4.5 to 5.5 V			10	ms
		time ^{Note 2}				30	
External clock	X2 X1	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
		X1 input high/low level width (txH, txL)		100		500	ns

Main System Clock Oscillation Circuit Characteristics(TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

- **Notes 1.** Indicates only oscillation circuit characteristics. Refer to AC characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.

Caution When using the main system clock oscillator, wiring the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.


- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying higher current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground wiring to a ground pattern in which a high current flows.
- · Do not fetch a signal from the oscillator.

★ Recommended Oscillating Circuit Constants

Ceramic Resonator (T_A = -40 to $+85^{\circ}$ C)

Manufacturer	Product Name	Frequency (MHz)	Oscillat Circuit Consta	nt (pF)	(Vdd)	Range	Remarks
			C1	C2	MIN.	MAX.	
Murata Mfg. Co., Ltd.	CSB1000J ^{Note}	1.00	100	100	1.8	5.5	Rd = 1.0 kΩ
CO., LIU.	CSA2.00MG040	2.00	100	100	2.0	5.5	
	CST2.00MG040		_	-			Product containing capacitor
	CSA4.19MG	4.19	30	30	1.8	5.5	
	CST4.19MGW		_	-			Product containing capacitor
	CSA5.00MG	5.00	30	30	2.2	5.5	
	CST5.00MGW		-	-			Product containing capacitor
	CSA5.00MGU		30	30	1.8	5.5	
	CST5.00MGWU		_	-			Product containing capacitor
ток	CCR1000K2	1.0	100	100	1.8	5.5	
	CCR4.19MC3	4.19	_	-	1.8	5.5	Product containing capacitor
	FCR4.19MC5		_	-	2.0		Product containing capacitor
	CCR5.0MC3	5.0	_	-	2.2	5.5	Product containing capacitor
	FCR5.0MC5		-	-	2.0		Product containing capacitor
Kyocera Corp.	KBR-1000F/Y	1.0	100	100	1.8	5.5	$T_A = -20$ to +85 °C
	KBR-2.0MS	2.0	68	68	2.1	5.5	
	PBRC4.19A	4.19	33	33	1.8	5.5	
	PBRC4.19B		-	-			Product containing capacitor, $T_A = -20$ to +85°C
	KBR-4.19MSB		33	33			$T_{A} = -20 \text{ to } +85^{\circ}\text{C}$
	KBR-4.19MKC		_	-			Product containing capacitor, $T_A = -20$ to +85°C
	PBRC5.00A	5.0	33	33	1.8	5.5	T _A = −20 to +85°C
	PBRC5.00B		_	_	1		Product containing capacitor, $T_A = -20$ to $+85^{\circ}C$
	KBR-5.0MSB		33	33			T _A = −20 to +85°C
	KBR-5.0MKC		_	-	1		Product containing capacitor, $T_A = -20$ to $+85^{\circ}C$

Note If the ceramic resonator is the CSB1000J (1.0 MHz) by Murata Mfg. Co., Ltd., the limiting resistor (Rd = 1.0 $k\Omega$) is needed (see the following figure). If another recommended oscillator is used, the limiting resistor is not needed.

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being used.

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Output current, low	lo∟	1 pin				15	mA
		Total of all of the pins			80	mA	
Input voltage, high	VIH1	P00 to P07, P10 to P17,	V _{DD} = 2.7 to 5.5 V	0.7 Vdd		Vdd	V
		P20 to P22, P30 to P32		0.9 Vdd		Vdd	V
	VIH2	INTP0 to INTP2, SI0, RxD,	V _{DD} = 2.7 to 5.5 V	0.8 Vdd		Vdd	V
		ASCK, SCK0, TI0, TI1, RESET		0.9 Vdd		Vdd	V
	Vінз	X1, X2		Vdd - 0.1		Vdd	V
Input voltage, low	VIL1	P00 to P07, P10 to P17,	V _{DD} = 2.7 to 5.5 V	0		0.3 Vdd	V
		P20 to P22, P30 to P32		0		0.1 Vdd	V
	VIL2	INTP0 to INTP2, SI0, RXD,	V _{DD} = 2.7 to 5.5 V	0		0.2 Vdd	V
		ASCK, SCK0, TI0, TI1, RESET		0		0.1 Vdd	V
	VIL3	X1, X2		0		0.1	V
Output voltage, high	Vон	VDD = 4.5 to 5.5 V, IOH = -1 mA		Vdd - 1.0			V
		Іон = -100 μА		Vdd - 0.5			V
Output voltage, low	Vol	V_{DD} = 4.5 to 5.5 V, IoL = 10 mA				1.0	V
		lol = 400 μA				0.5	V
Input leakage current, high	Ілні	Vin = Vdd	Pins other than			3	μΑ
			X1 and X2				
	ILIH2		X1, X2			20	μΑ
Input leakage current, low	ILIL1	$V_{IN} = 0 V$	Pins other than			-3	μΑ
			X1 and X2				
	ILIL2		X1, X2			-20	μΑ
Output leakage current, high	Ігон	Vout = Vdd				3	μΑ
Output leakage current, low	Ilol	Vout = 0 V				-3	μΑ

Remark The characteristics of an alternate function pin and a port pin are the same unless specified otherwise.

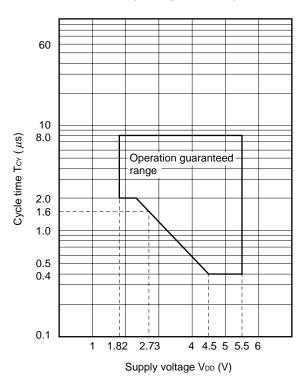
DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Con	Test Conditions			MAX.	Unit
Software pull-up resistor	R	V _{IN} = 0 V		50	100	200	kΩ
Supply currentNote 1	IDD1	5.0 MHz	5.0 MHz V _{DD} = 5.0 V ± 10 % Note 2		4.2	12.0	mA
		Crystal oscillation operation	V _{DD} = 3.0 V ± 10 %Note 3		0.95	2.8	mA
	IDD2	5.0 MHz V _{DD} = 5.0 V ± 10 % ^{Note 2}			0.7	2.0	mA
		Crystal oscillation HALT mode	V_{DD} = 3.0 V ± 10 %Note 3		0.3	0.9	mA
	Idd3	STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		0.1	20	μΑ
			$V_{DD} = 3.0 \text{ V} \pm 10 \%$		0.05	8	μA
			$V_{DD} = 2.0 \text{ V} \pm 10 \%$		0.05	10	μA

Notes 1. This does not include the port current (containing the current flowing through the on-chip pull-up resistor).

2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)

3. When operating at low-speed mode (when PCC is set to 02H)


Remark The characteristics of an alternate function pin and a port pin are the same unless specified otherwise.

AC Characteristics

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
Cycle time (Min.	Тсү	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				8	μs
instruction execution time)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				8	μs
						8	μs
TI0, TI1 inputs	tтıн,	V _{DD} = 2.7 to 5.5 V					μs
High/low level widths	t⊤ı∟						μs
TI0, TI1 input frequency	fтı	VDD = 2.7 to 5.5 V		0		4	MHz
				0		275	kHz
Interrupt request input	tinth,	INTP0 to INTP2	V _{DD} = 2.7 to 5.5 V	10			μs
High/low level widths	t intl			20			μs
RESET	trsl	V _{DD} = 2.7 to 5.5 V					μs
Low level width				20			μs

(1) Basic operation (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

TCY VS VDD (Main System Clock)

(2) Serial interface channel 0 (T_A = -40 to +85°, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Te	st Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	V _{DD} = 2.7 to 5.5 V					ns
							ns
SCK0 high/low level	t кн1,	VDD = 2.7 to 5.5 V		tксү1/2-50			ns
widths	tĸ∟1						ns
SI0 setup time	tsik1	V _{DD} = 2.7 to 5.5 V		150			ns
(on $\overline{\text{SCK0}}$ \uparrow)				500			ns
SI0 hold time	tksi1	VDD = 2.7 to 5.5 V		400			ns
(on $\overline{\text{SCK0}}$ \uparrow)				600			ns
$\overline{\texttt{SCK0}} \downarrow \rightarrow \texttt{SO0}$	tkso1	$R = 1k Ω$, $V_{DD} = 2.7 to 5.5 V$		0		250	ns
Output delay time		C = 100 pF ^{Note}		0		1000	ns

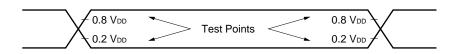
(i) 3-wire serial I/O mode (SCK0 - on-chip clock output)

Note R and C are the load resistance and load capacitance of the SO0 output line.

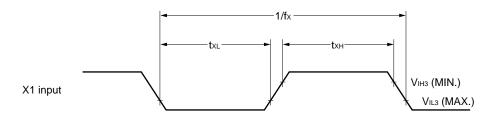
(ii) 3-wire serial I/O mode (SCK0 - external clock output)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү2	V _{DD} = 2.7 to 5.5 V		800			ns
							ns
SCK0 high/low level	tкн2,	V _{DD} = 2.7 to 5.5 V		400			ns
widths	tĸl2			1600			ns
SI0 setup time	tsik2	V _{DD} = 2.7 to 5.5 V		100			ns
(on SCK0 ↑)				150			ns
SI0 hold time	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
(on SCK0 ↑)				600			ns
$\overline{\operatorname{SCK0}} \downarrow \to \operatorname{SO0}$	tkso2	$R = 1k Ω$, $V_{DD} = 2.7 to 5.5 V$		0		300	ns
Output delay time		C = 100 pF ^{Note}		0		1000	ns

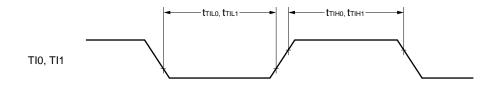
Note R and C are the load resistance and load capacitance of the SO0 output line.


(iii) UART mode (dedicated baud rate generator output)

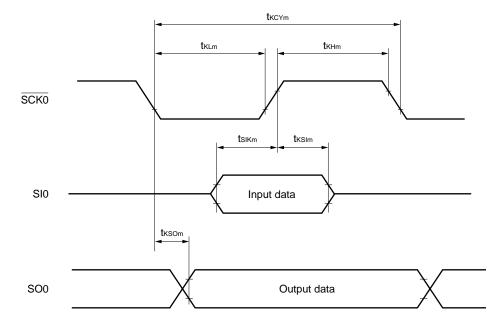
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 2.7 to 5.5 V			78125	bps
					19531	bps


(iv) UART mode (external clock input)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	V _{DD} = 2.7 to 5.5 V	800			ns
			3200			ns
ASCK high and low level	tкнз,	V _{DD} = 2.7 to 5.5 V	400			ns
widths	tкLз		1600			ns
Transfer rate		V _{DD} = 2.7 to 5.5 V			39063	bps
					9766	bps
ASCK rise and fall times	tr, tr				1	μs


AC Timing Test Points (Except for X1 input)

Clock Timing

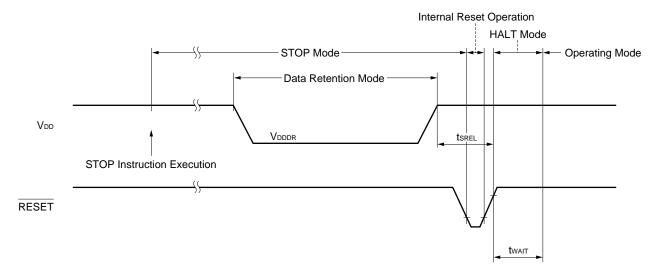


TI Timing

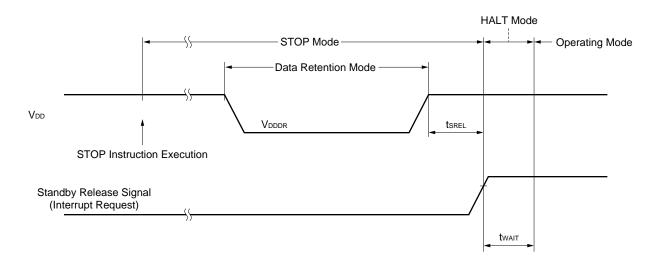
Serial Transfer Timing

3-Wire serial I/O mode:

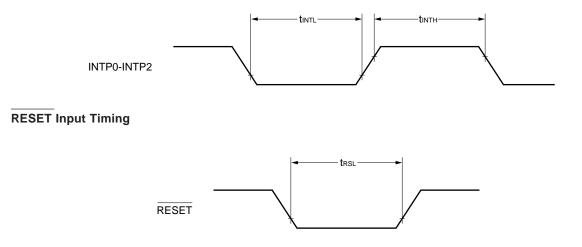
UART mode (external clock input):


Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.8		5.5	v
Release signal set time	tsrel		0		0	μs
Oscillation stabilization wait time	twait	Release by RESET		2 ¹⁵ /fx		ms
		Release by interrupt request		Note		ms


Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of 2¹²/fx, 2¹⁵/fx, or 2¹⁷/fx is possible.

Remark fx: Main system clock oscillation frequency


Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Release by Interrupt Request Signal)

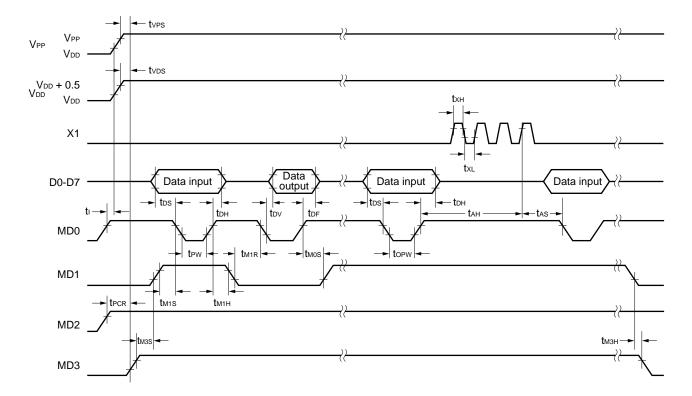
Interrupt Request Input Timing

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Neither X1 nor X2	0.7 Vdd		Vdd	V
	VIH2	X1, X2	VDD-0.5		Vdd	V
Input voltage, low	VIL1	Neither X1 nor X2	0		0.3 Vdd	V
	VIL2	X1, X2	0		0.4	V
Input leakage current	IL1	VIN = VIL OF VIH			10	μA
Output voltage, high	Vон	Іон = −1 mA	VDD-1.0			V
Output voltage, low	Vol	lo∟ = 1.6 mA			0.4	V
VDD supply current	ldd				30	mA
VPP supply current	Ірр	MD0 = VIL, MD1 = VIH			30	mA

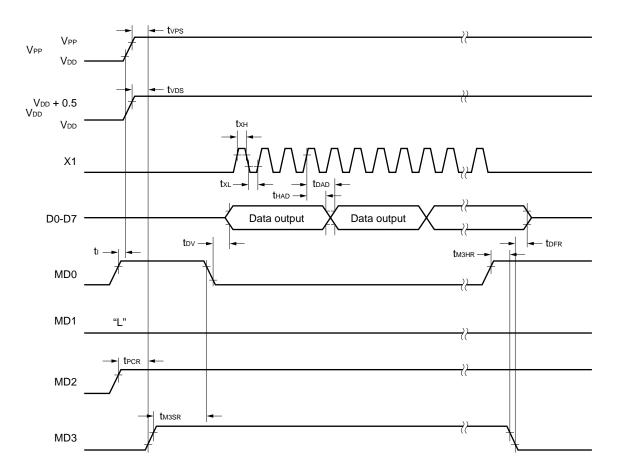
DC Programming Characteristics (TA = 25°C, VDD = 5.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V, Vss = 0 V)

Cautions 1. Keep VPP within +13.5 V, including overshoot.

2. Apply VDD before VPP and turn it off after VPP.

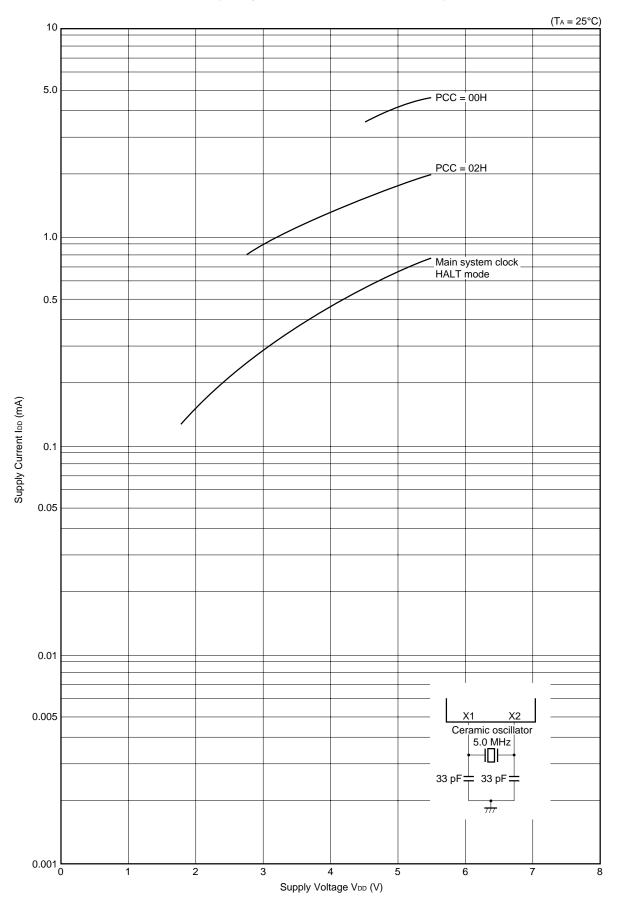

Parameter	Symbol	Note 1	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ^{Note 2}	tas	tas		2			μs
(vs. MD0 ↓)							
MD1 setup time (vs. MD0 \downarrow)	t _{M1S}	toes		2			μs
Data setup time (vs. MD0 \downarrow)	tos	tos		2			μs
Address hold time ^{Note 2}	tан	tан		2			μs
(vs. MD0 ↓)							
Data hold time (vs. MD0 \uparrow)	tон	tон		2			μs
MD0 $\uparrow \rightarrow$ data output float	t DF	t _{DF}		0		130	μs
delay time							
V _{PP} setup time (vs. MD3 ↑)	tvps	tvps		2			μs
V _{DD} setup time (vs. MD3 ↑)	tvds	tvcs		2			μs
Initial program pulse width	tpw	tew		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (vs. MD1 ↑)	tмos	tces		2			μs
MD0 $\uparrow \rightarrow$ data output delay time	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (vs. MD0 ↑)	tм1н	tоен	tм1н + tм1к ≥ 50 μs	2			μs
MD1 recovery time (on MD0 \downarrow)	t M1R	tor		2			μs
Program counter reset time	t PCR	-		10			μs
X1 input high/low level widths	tхн, tкL.	-		0.125			μs
X1 input frequency	fx	-				4.19	MHz
Initial mode set time	tı	-		2			μs
MD3 setup time (vs. MD1 ↑)	tмзs	-		2			μs
MD3 hold time (vs. MD1 \downarrow)	tмзн	-		2			μs
MD3 setup time (vs. MD0 \downarrow)	tмзsr	-	During program memory read	2			μs
Address ^{Note 2} \rightarrow data output	t dad	tacc	During program memory read			2	μs
delay time							
Address ^{Note 2} \rightarrow data output	t had	tон	During program memory read	0		130	ns
hold time							
MD3 hold time (vs. MD0 ↑)	tмзнк	-	During program memory read	2			μs
MD3 $\downarrow \rightarrow$ data output float	t dfr	-	During program memory read			2	μs
delay time							

AC Programming Characteristics (TA = 25°C, VDD = 5.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V, Vss = 0 V)

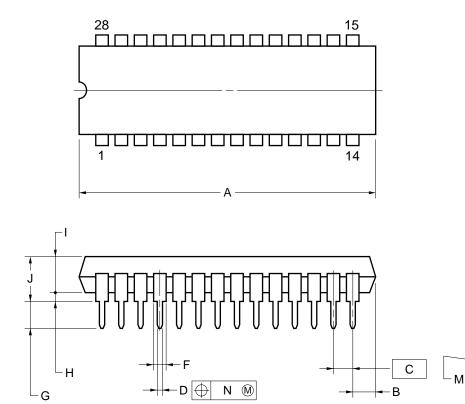

Notes 1. Symbol corresponding to those of μ PD27C256A.

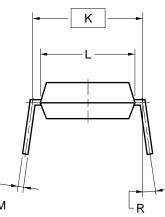
2. The internal address signal is incremented by one at the rising edge of the fourth X1 input and is not connected to a pin.

Program Memory Write Timing



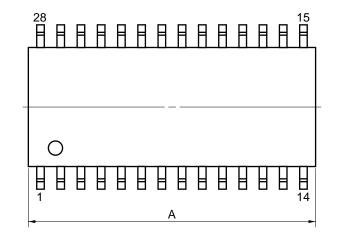
*



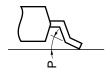

IDD VS VDD (Main system clock: 5.0 MHz ceramic oscillator)

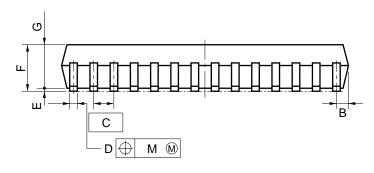
10. PACKAGE DRAWINGS

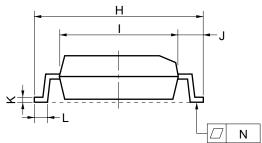
28PIN PLASTIC SHRINK DIP (400 mil)



NOTES


- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
А	28.46 MAX.	1.121 MAX.
В	2.67 MAX.	0.106 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
к	10.16 (T.P.)	0.400 (T.P.)
L	8.6	0.339
М	$0.25^{+0.10}_{-0.05}$	0.010+0.004 -0.003
Ν	0.17	0.007
R	0~15°	0~15°
		P28C-70-400A-1


28 PIN PLASTIC SOP (375 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	18.07 MAX.	0.712 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	$0.016^{+0.004}_{-0.003}$
Е	0.1±0.1	0.004±0.004
F	2.9 MAX.	0.115 MAX.
G	2.50	0.098
Н	10.3±0.3	$0.406^{+0.012}_{-0.013}$
I	7.2	0.283
J	1.6	0.063
К	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.002}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	0.12	0.005
Ν	0.15	0.006
Р	3° ^{+7°} -3°	3° ^{+7°} -3°

P28GM-50-375B-3

*** 11. RECOMMENDED SOLDERING CONDITIONS**

The μ PD78P9014 should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual** (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 11-1. Soldering Conditions for Surface-mount Devices

µPD78P9014GT: 28-pin Plastic SOP (375 mils)

Soldering Method	Soldering Conditions	Recommended Condition Code
Infrared reflow	Package peak temperature: 235°C, Duration: 30 seconds max. (at 210°C or above) Number of times: two times max., Limit on the number of days: 7 days ^{Note} (Later, prebaking at 125°C for 20 hours is required.) Attention Articles other than a heat-resistant tray (magazine, taping, non-heat-resistant tray) cannot be baked in the packed state.	IR35-207-2
VPS	Package peak temperature: 215°C, Duration: 40 seconds max. (at 200°C or above) Number of times: two times max., Limit on the number of days: 7 days ^{Note} (Later, prebaking at 125°C for 20 hours is required.)	VP15-207-2
Wave soldering	Soldering bath temperature: 260°C max., Duration: 10 seconds max., Number of times: Once Preheating temperature: 120°C max.(Package surface temperature) Limit on the number of days: 7 days ^{Note} (Later, prebaking at 125°C for 20 hours is required.)	WS60-207-1
Partial heating	Pin temperature: 300°C max., Duration: 3 seconds max. (per device side)	-

Note The storage conditions are 25°C and 65% RH for the number of storage days after opening the seal of the dry pack.

Caution Using more than one soldering method should be avoided. (except in the case of partial heating)

Table 11-2. Soldering Conditions for Through-hole Devices

µPD78P9014CT: 28-pin Plastic Shrink DIP (400 mils)

Soldering Method	Soldering Conditions	
Wave soldering (pin only)	Solder bath temperature: 260 °C max., Duration: 10 seconds max.	
Partial heating	Pin temperature: 300 °C max., Duration: 3 seconds max.(per pin)	

Caution Wave soldering is only for the lead part in order that jet solder cannot contact with the chip directly.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the μ PD78P9014.

Language Processing Software

RA78K0S ^{Notes 1, 2, 3}	78K/0S Series common assembler package
CC78K0S ^{Notes 1, 2, 3}	78K/0S Series common C compiler package
DF789014 ^{Notes 1, 2, 3}	μ PD789014 Subseries common device file
CC78K0S-LNotes 1, 2, 3, 7	78K/0S Series common C compiler library source file

PROM Writing Tools

PG-1500	PROM programmer
PA-78P9014GT	PROM programmer adapter connected to PG-1500
PG-1500 controller	PG-1500 control program

Debugging Tools

ND-K901 ^{Notes 4, 7}	In-circuit emulator for the μ PD789014 Subseries; included the screen debugger NS-78K9 in ND-K901
IF-98DNote 4	Interface board required when the PC-9800 Series (except for notebook PCs) is used as the host machine for NK-K901
IF-PCDNote 4	Interface board required when an IBM PC/AT or a compatible machine (except for note- book PCs) is used as the host machine for NK-K901
IF-CARD ^{Note 4}	Interface card required when a PC-9800 Series, an IBM PC/AT, or a compatible notebook is used as the host machine for NK-K901
NP-28CT ^{Note 4}	Emulation probe for the 28-pin plastic shrink DIP
NP-28GT ^{Note 4}	Emulation probe for the 28-pin plastic SOP
NJ-535 ^{Note 4}	100V/120V-compatible voltage adapter
NJ-550W ^{Note 4}	100V to 240V-compatible voltage adapter
SM78K0S ^{Notes 5, 6}	78K/0S Series common system simulator
DF789014 ^{Notes 5, 6}	Device file for the μ PD789014 Subseries

Real-Time OS

MX78K0S ^{Notes 1, 2}	78K/0S Series OS
-------------------------------	------------------

Notes 1. PC-9800 Series (MS-DOSTM) based

- 2. IBM PC/ATTM and compatibles (PC DOSTM/IBM DOSTM/MS-DOS) based
- 3. HP9000 Series 700[™] (HP-UX[™]) based, SPARCstation[™] (SunOS[™]) based, NEWS[™] (NEWS-OS[™]) based
- **4.** This is a product of Naito Densei Machida Seisakusho Co., Ltd. (044-822-3813). To purchase, contact Naito Densei Machida Seisakusho Co., Ltd.
- 5. PC-9800 Series (MS-DOS + WindowsTM) based
- 6. IBM PC/AT and compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based
- 7. Under development

Remark RA78K0S, CC78K0S, and SM78K0S are used with DF789014.

APPENDIX B. RELATED DOCUMENTS

Documents Related to Device

Document Name	Document No.		
Document Name	Japanese	English	
μPD78P9014 Data Sheet	This document	To be prepared	
μPD789011, 9012 Data Sheet	To be prepared	To be prepared	
μPD789014 Subseries User's Manual	U11187J	U11187E	
78K/0S Series User's Manual - Instruction	U11047J	U11047E	

Development Tool Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
RA78K0S Assembler Package	Operation	U11622J	U11622E
	Assembly language	U11599J	U11599E
	Structured assembly language	U11623J	U11623E
CC78K/0S C Compiler	Operation	U11816J	U11816E
	Language	U11817J	U11817E
SM78K0S System Simulator Windows	Reference	U11489J	U11489E
based			
SM78K Series System Simulator	External components user-open	U10092J	U10092E
	interface specification		
PG-1500		U11940J	U11940E

Documents Related to Embedded Software (User's Manual)

Document Name	Document No.	
	Japanese	English
78K/0S Series OS MX78K0S	To be prepared	To be prepared

Caution The documents listed above are subject to change without notice. Be sure to use the latest documents for designing, etc.

Other Related Documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Surface Mount Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	C11892J	C11892E
Guide to Quality Assurance for Semiconductor Device	C11893J	MEI-1202
Guide for Products Related to Microcomputer: Other Companies	U11416J	_

Caution The documents listed above are subject to change without notice. Be sure to use the latest documents for designing, etc.

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. QTOP is a trademark of NEC Corp.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5