DATA SMRET

1N4150; 1N4151; 1N4153 High-speed diodes

Product specification
Supersedes data of April 1992
File under Discrete Semiconductors, SC01

FEATURES

- Hermetically sealed leaded glass SOD27 (DO-35) package
- High switching speed: max. 4 ns
- General application
- Continuous reverse voltage: max. 50 V
- Repetitive peak reverse voltage: max. 75 V
- Repetitive peak forward current: max. 600 mA and 450 mA respectively
- Forward voltage: max. 1 V .

APPLICATIONS

- High-speed switching
- 1N4150: general purpose use in computer and industrial applications
- 1N4151 and 1N4153: military and industrial applications.

DESCRIPTION

The 1N4150, 1N4151, 1N4153 are high-speed switching diodes fabricated in planar technology, and encapsulated in hermetically sealed leaded glass SOD27 (DO-35) packages.

The diodes are type branded.
Fig. 1 Simplified outline (SOD27; DO-35) and symbol.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {RRM }}$	repetitive peak reverse voltage $\begin{aligned} & \text { 1N4151 } \\ & \text { 1N4153 } \end{aligned}$			$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{R}	continuous reverse voltage		-	50	V
I_{F}	continuous forward current $\begin{aligned} & \text { 1N4150 } \\ & \text { 1N4151 } \\ & \text { 1N4153 } \end{aligned}$	see Fig.2; note 1	-	$\begin{aligned} & 300 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
IfRM	$\begin{array}{\|l} \text { repetitive peak forward current } \\ \text { 1N4150 } \\ \text { 1N4151 } \\ \text { 1N4153 } \end{array}$		-	$\begin{aligned} & 600 \\ & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {FSM }}$	non-repetitive peak forward current	square wave; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge; see Fig. 4 $\begin{aligned} & t=1 \mu \mathrm{~s} \\ & \mathrm{t}=1 \mathrm{~ms} \\ & \mathrm{t}=1 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 4 \\ & 1 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; note 1	-	500	mW
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+200	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-	200	${ }^{\circ} \mathrm{C}$

Note

1. Device mounted on an FR4 printed-circuit board; lead length 10 mm .

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{F}	forward voltage 1N4150 1N4151 1N4153	$\begin{aligned} & \text { see Fig. } 3 \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=0.1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=0.25 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 540 \\ 660 \\ 760 \\ 820 \\ 870 \\ - \\ 490 \\ 530 \\ 590 \\ 620 \\ 700 \\ 740 \end{gathered}$	$\begin{array}{r} 620 \\ 740 \\ 860 \\ 920 \\ 1000 \\ 1000 \\ 550 \\ 590 \\ 670 \\ 700 \\ 810 \\ 880 \end{array}$	mV mV
I_{R}	```reverse current 1N4150 1N4151 1N4153```	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$; see Fig. 5		$\begin{aligned} & 0.1 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
I_{R}	```reverse current 1N4150 1N4151 1N4153```	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$; see Fig. 5	-	$\begin{array}{r} 100 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ $\mu \mathrm{A}$
$\mathrm{C}_{\text {d }}$	diode capacitance 1N4150 1N4151 1N4153	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{R}}=0$; see Fig. 6	$-$	$\begin{aligned} & 2.5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
t_{rr}	reverse recovery time1N4150	when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=0.1 \mathrm{~mA}$; see Fig. 7	-	6	ns
		when switched from $I_{F}=10 \mathrm{~mA}$ to 200 mA to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}$ to 200 mA ; $R_{L}=100 \Omega$; measured at $I_{R}=0.1 \times I_{F}$; see Fig. 7	-	4	ns
		when switched from $I_{F}=200 \mathrm{~mA}$ to 400 mA to $\mathrm{I}_{\mathrm{R}}=200 \mathrm{~mA}$ to 400 mA ; $R_{L}=100 \Omega$; measured at $I_{R}=0.1 \times I_{F}$; see Fig. 7	-	6	ns
t_{rr}	reverse recovery time 1N4151	when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$; see Fig. 7	-	4	ns
		when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$; see Fig. 7	-	2	ns
t_{rr}	reverse recovery time 1N4153	when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$; see Fig. 7	-	4	ns
		when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$; see Fig. 7	-	2	ns
t_{fr}	forward recovery time	when switched to $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=0.4 \mathrm{~ns}$; measured at $\mathrm{V}_{\mathrm{F}}=1 \mathrm{~V}$; see Fig. 8	-	10	ns

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\text {th j-tp }}$	thermal resistance from junction to tie-point	lead length 10 mm	240	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\text {th j }}$-a	thermal resistance from junction to ambient	lead length 10 mm ; note 1	350	$\mathrm{~K} / \mathrm{W}$

Note

1. Device mounted on a printed circuit-board without metallization pad.

GRAPHICAL DATA

Device mounted on an FR4 printed-circuit board; lead length 10 mm .
(1) 1 N 4150
(2) $1 \mathrm{~N} 4151 ; 1 \mathrm{~N} 4153$.

Fig. 2 Maximum permissible continuous forward current as a function of ambient temperature.

(1) $\mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$; typical values.
(2) $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; typical values.

Fig. 3 Forward current as a function of forward voltage

Fig. 4 Maximum permissible non-repetitive peak forward current as a function of pulse duration.

Fig. 5 Reverse current as a function of junction temperature.

$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Fig. 6 Diode capacitance as a function of reverse voltage; typical values.

(1) The value of I_{R} is dependent on product type.

Fig. 7 Reverse recovery voltage test circuit and waveforms.

Input signal: forward pulse rise time $t_{r}=0.4 \mathrm{~ns}$; forward pulse duration $\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$; duty factor $\delta=0.01$.

Fig. 8 Forward recovery time test circuit and waveforms.

PACKAGE OUTLINE

Dimensions in mm.
Fig. 9 SOD27 (DO-35).

DEFINITIONS

Data Sheet Status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values			Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information			
Where application information is given, it is advisory and does not form part of the specification.			

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

