DISCRETE SEMICONDUCTORS

Product specification Supersedes data of November 1993 File under Discrete Semiconductors, SC01 1996 May 24

Philips Semiconductors

BYD17 series

FEATURES

- · Glass passivated
- High maximum operating temperature
- Low leakage current
- · Excellent stability
- Guaranteed avalanche energy absorption capability
- Shipped in 8 mm embossed tape
- Smallest surface mount rectifier

DESCRIPTION

outline.

Cavity free cylindrical glass package through Implotec^{TM(1)} technology.

This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

(1) Implotec is a trademark of Philips.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage				
	BYD17D		_	200	V
	BYD17G		_	400	V
	BYD17J		_	600	V
	BYD17K		_	800	V
	BYD17M		_	1000	V
V _{RWM}	crest working reverse voltage				
	BYD17D		_	200	V
	BYD17G		_	400	V
	BYD17J		_	600	V
	BYD17K		_	800	V
	BYD17M		_	1000	V
V _R	continuous reverse voltage				
	BYD17D		_	200	V
	BYD17G		_	400	V
	BYD17J		_	600	V
	BYD17K		_	800	V
	BYD17M		_	1000	V

MARKING

TYPE NUMBER	MARKING CODE
BYD17D	17D PH
BYD17G	17G PH
BYD17J	17J PH
BYD17K	17K PH
BYD17M	17M PH

BYD17 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{F(AV)}	average forward current	$T_{tp} = 105 \text{ °C};$ averaged over any 20 ms period; see Figs 2 and 4	-	1.5	A
		T _{amb} = 65 °C; PCB mounting (see Fig.9); averaged over any 20 ms period; see Figs 3 and 4	_	0.6	A
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sinewave; $T_j = T_{j max}$ prior to surge; $V_R = V_{RRMmax}$	_	20	A
E _{RSM}	non-repetitive peak reverse avalanche energy	L = 120 mH; $T_j = T_{j max}$ prior to surge; inductive load switched off	_	7	mJ
T _{stg}	storage temperature		-65	+175	°C
Тj	junction temperature	see Fig.5	-65	+175	°C

ELECTRICAL CHARACTERISTICS

 $T_j = 25 \ ^{\circ}C$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 1 \text{ A}; T_j = T_{j \text{ max}}; \text{see Fig.6}$	_	_	0.93	V
		I _F = 1 A; see Fig.6	-	_	1.05	V
V _{(BR)R}	reverse avalanche breakdown voltage	I _R = 0.1 mA				
	BYD17D		225	_	-	V
	BYD17G		450	_	-	V
	BYD17J		650	_	-	V
	BYD17K		900	_	-	V
	BYD17M		1100	_	-	V
I _R	reverse current	V _R = V _{RRMmax} ; see Fig.7	_	_	1	μA
		$V_R = V_{RRMmax}$; $T_j = 165 \text{ °C}$; see Fig.7	-	_	100	μA
t _{rr}	reverse recovery time	when switched from $I_F = 0.5$ A to $I_R = 1$ A; measured at $I_R = 0.25$ A; see Fig.10	—	3	_	μs
C _d	diode capacitance	V _R = 0 V; f = 1 MHz; see Fig.8	_	21	-	pF

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point		30	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	150	K/W

Note

1. Device mounted on epoxy-glass printed-circuit board, 1.5 mm thick; thickness of copper ≥40 μm, see Fig.9. For more information please refer to the *"General Part of Handbook SC01"*.

BYD17 series

GRAPHICAL DATA

Fig.4 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

 $a = 1.57; V_R = V_{RRMmax}; \delta = 0.5.$ Device mounted as shown in Fig.9.

Fig.3 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

as a function of reverse voltage.

MGC739

10³

10²

10

1

0

40

80

120

160

T_j (°C)

200

Ι_R (μΑ)

Controlled avalanche rectifiers

BYD17 series

1 L 1

Fig.8 Diode capacitance as a function of reverse voltage; typical values.

10²

10³

V_R (V)

10

BYD17 series

BYD17 series

PACKAGE OUTLINE

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
	Application information			
Application information				

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.