
DISCRETE SEMICONDUCTORS

Product specification Supersedes data of December 1991 File under Discrete Semiconductors, SC01 1996 Jun 05

FEATURES

- Glass passivated
- High maximum operating temperature
- Low leakage current
- Excellent stability
- Guaranteed avalanche energy absorption capability
- Available in ammo-pack.

DESCRIPTION

Cavity free cylindrical glass package through $Implotec^{TM(1)}$ technology. This package is hermetically sealed

and fatigue free as coefficients of expansion of all used parts are matched.

⁽¹⁾ Implotec is a trademark of Philips.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage				
	BYD31D		_	200	V
	BYD31G		_	400	V
	BYD31J		_	600	V
	BYD31K		_	800	V
	BYD31M		_	1000	V
V _R	continuous reverse voltage				
	BYD31D		_	200	V
	BYD31G		_	400	V
	BYD31J		_	600	V
	BYD31K		_	800	V
	BYD31M		_	1000	V
I _{F(AV)}	average forward current	T _{tp} = 55 °C; lead length = 10 mm; see Fig.2; averaged over any 20 ms period; see also Fig.6	_	440	mA
		T _{amb} = 60 °C; PCB mounting (see Fig.11); see Fig.3; averaged over any 20 ms period; see also Fig.6	_	320	mA
I _{FRM}	repetitive peak forward current	T _{tp} = 55 °C; see Fig.4	_	4	А
		T _{amb} = 60 °C; see Fig.5	_	3	А
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave; T _j = T _{j max} prior to surge; $V_R = V_{RRMmax}$	_	5	A

BYD31 series

BYD31 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
P _{RSM}	non-repetitive peak reverse power dissipation	t = 20 μ s half sine wave; T _j = T _{j max} prior to surge			
	BYD31D to J		_	100	w
	BYD31K and M		_	50	w
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature	see Fig.7	-65	+175	°C

ELECTRICAL CHARACTERISTICS

 $T_j = 25 \ ^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 0.5 A; T_j = T_{j max};$ see Fig.8	_	_	1.15	V
		I _F = 0.5 A; see Fig.8	-	_	1.35	V
V _{(BR)R}	reverse avalanche breakdown voltage	I _R = 0.1 mA				
	BYD31D		300	_	_	V
	BYD31G		500	_	_	V
	BYD31J		700	_	-	V
	BYD31K		900	_	-	V
	BYD31M		1100	_	_	V
I _R	reverse current	V _R = V _{RRMmax} ; see Fig.9	-	_	1	μA
		V _R = V _{RRMmax} ; T _j = 165 °C; see Fig.9	_	_	75	μA
t _{rr}	reverse recovery time	when switched from				
	BYD31D to J	$I_F = 0.5 \text{ A to } I_R = 1 \text{ A};$	-	-	250	ns
	BYD31K and M	measured at I _R = 0.25A see Fig.12	-	_	300	ns
C _d	diode capacitance	f = 1 MHz; V _R = 0 V;				
	BYD31D to J	see Fig.10	-	9	-	pF
	BYD31K and M		-	8	-	pF
dI _R	maximum slope of reverse recovery	when switched from				
dt	current	$I_F = 1 \text{ A to } V_R \ge 30 \text{ V}$				
	BYD31D to J	and dI _F /dt = -1 A/µs; see Fig.13	-	—	6	A/μs
	BYD31K and M		-	_	5	A/μs

BYD31 series

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	180	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	250	K/W

Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.11. For more information please refer to the *'General Part of Handbook SC01'*.

BYD31 series

Product specification

GRAPHICAL DATA

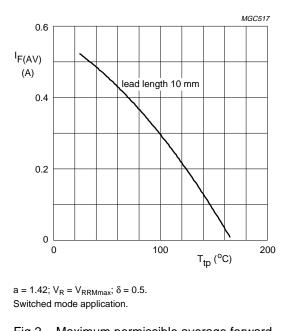


Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

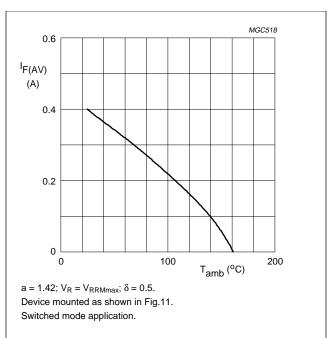


Fig.3 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

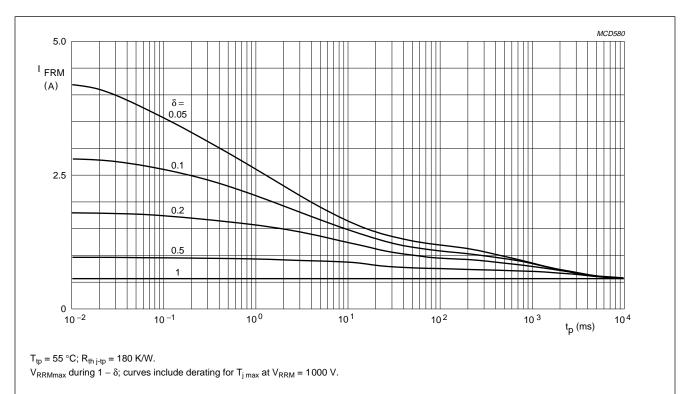
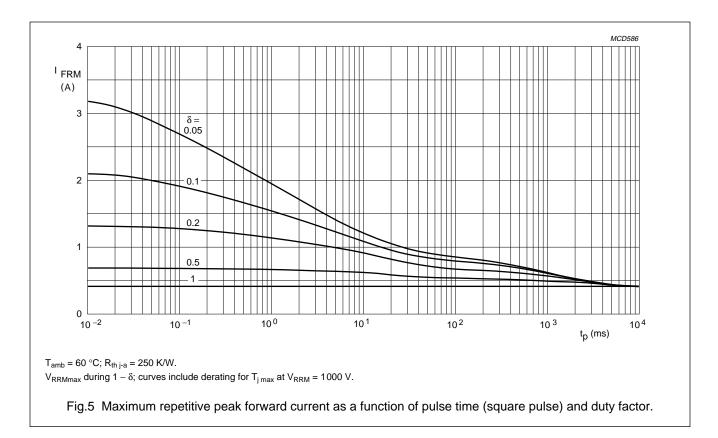
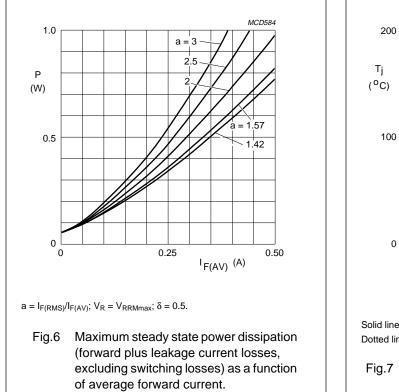
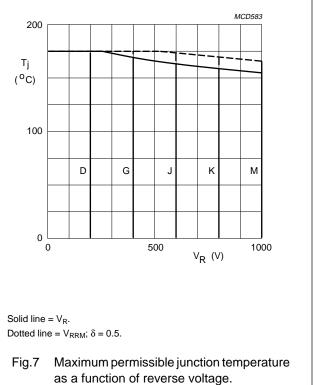
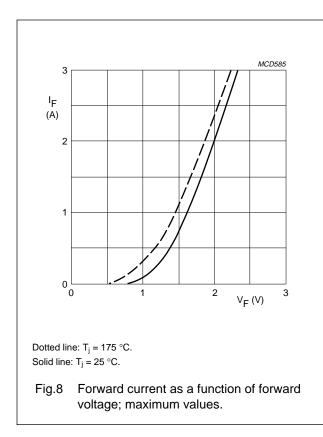
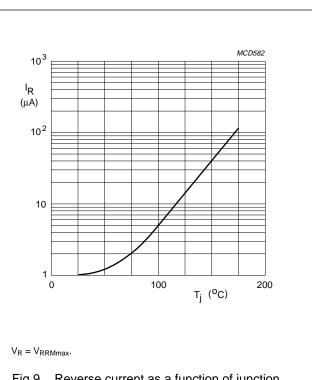
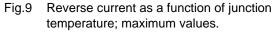





Fig.4 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.


BYD31 series





BYD31 series

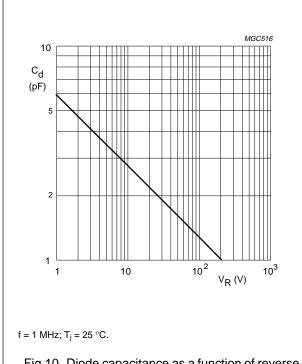
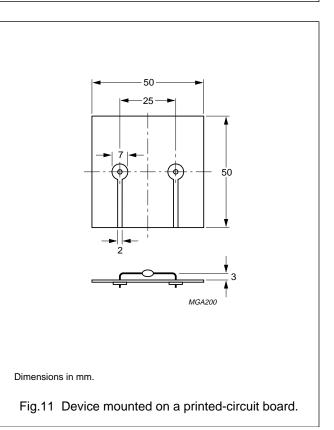
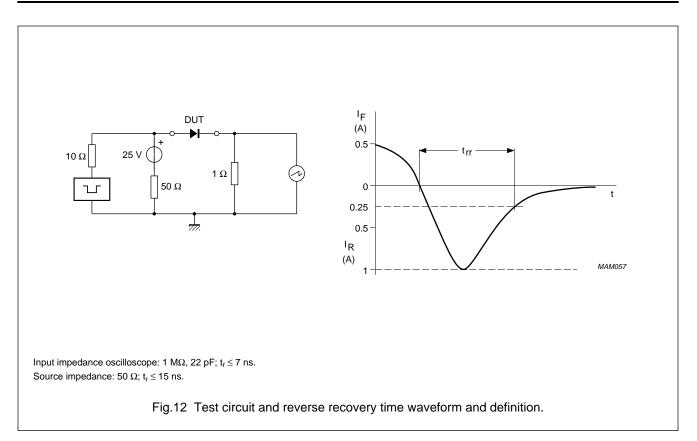
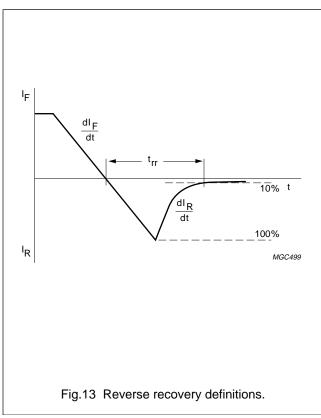
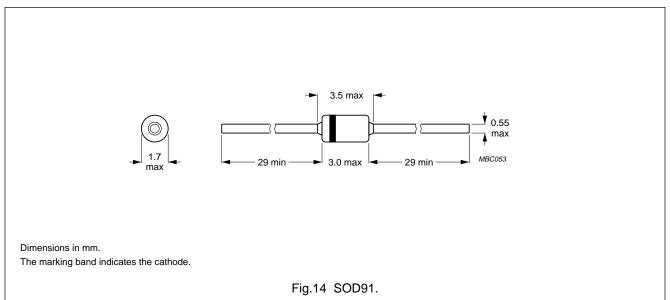





Fig.10 Diode capacitance as a function of reverse voltage; typical values.


BYD31 series

BYD31 series

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values r of the device at these or at a	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or nay cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification imiting values for extended periods may affect device reliability.
Application information	
Where application information	on is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.