
DISCRETE SEMICONDUCTORS

DATA SHEET

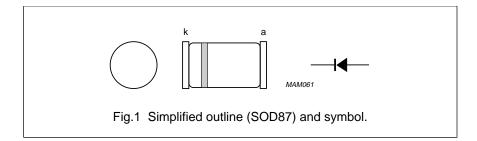
BYD37 seriesFast soft-recovery controlled avalanche rectifiers

Product specification Supersedes data of April 1992 File under Discrete Semiconductors, SC01 1996 Jun 05

Fast soft-recovery controlled avalanche rectifiers

BYD37 series

FEATURES


- Glass passivated
- High maximum operating temperature
- Low leakage current
- Excellent stability
- Guaranteed avalanche energy absorption capability
- Smallest surface mount rectifier outline
- Shipped in 8 mm embossed tape.

DESCRIPTION

Cavity free cylindrical glass package through Implotec^{TM(1)} technology. This package is hermetically sealed

and fatigue free as coefficients of expansion of all used parts are matched.

(1) Implotec is a trademark of Philips.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage				
	BYD37D		_	200	V
	BYD37G		_	400	V
	BYD37J		_	600	V
	BYD37K		_	800	V
	BYD37M		_	1000	V
V _R	continuous reverse voltage				
	BYD37D		_	200	V
	BYD37G		_	400	V
	BYD37J		_	600	V
	BYD37K		_	800	V
	BYD37M		_	1000	V
I _{F(AV)}	average forward current	T _{tp} = 105 °C; see Fig.2; averaged over any 20 ms period; see also Fig.6	_	1.5	A
I _{F(AV)}	average forward current	T _{amb} = 60 °C; PCB mounting (see Fig.11); see Fig.3; averaged over any 20 ms period; see also Fig.6	-	0.6	А
I _{FRM}	repetitive peak forward current	T _{tp} = 105 °C; see Fig.4	_	13	Α
		T _{amb} = 60 °C; see Fig.5	_	5.5	Α
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave; $T_j = T_{j \text{ max}}$ prior to surge; $V_R = V_{RRMmax}$	_	20	A
E _{RSM}	non-repetitive peak reverse avalanche energy	L = 120 mH; $T_j = T_{j \text{ max}}$ prior to surge; inductive load switched off			
	BYD37D to J		_	10	mJ
	BYD37K and M		_	7	mJ

Fast soft-recovery controlled avalanche rectifiers

BYD37 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature	see Fig.7	-65	+175	°C

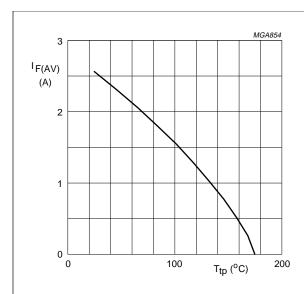
ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 1 A$; $T_j = T_{j \text{ max}}$; see Fig.8	_	_	1.1	V
		I _F = 1 A; see Fig.8	_	_	1.3	V
V _{(BR)R}	reverse avalanche breakdown voltage	I _R = 0.1 mA				
	BYD37D		300	_	_	V
	BYD37G		500	_	_	V
	BYD37J		700	_	_	V
	BYD37K		900	_	_	V
	BYD37M		1100	_	_	V
I _R	reverse current	$V_R = V_{RRMmax}$; see Fig.9	_	_	1	μΑ
		$V_R = V_{RRMmax};$ $T_j = 165 ^{\circ}C;$ see Fig.9	_	-	100	μΑ
t _{rr}	reverse recovery time	when switched from				
	BYD37D to J	$I_F = 0.5 \text{ A to } I_R = 1 \text{ A};$	_	_	250	ns
	BYD37K and M	measured at $I_R = 0.25A$; see Fig.12	_	-	300	ns
C _d	diode capacitance	$f = 1 \text{ MHz}; V_R = 0 \text{ V};$ see Fig.10	_	20	_	pF
dl _R	maximum slope of reverse recovery	when switched from				
dt	current	$I_F = 1 \text{ A to } V_R \ge 30 \text{ V}$				
	BYD37D to J	and $dI_F/dt = -1 A/\mu s$; see Fig.13	_	_	6	A/μs
	BYD37K and M	300 Fig. 13	_	_	5	A/μs

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point		30	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	150	K/W


Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.11. For more information please refer to the *'General Part of Handbook SC01'*.

Fast soft-recovery controlled avalanche rectifiers

BYD37 series

GRAPHICAL DATA

 $a = 1.42; \ V_R = V_{RRMmax}; \ \delta = 0.5.$ Switched mode application.

Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

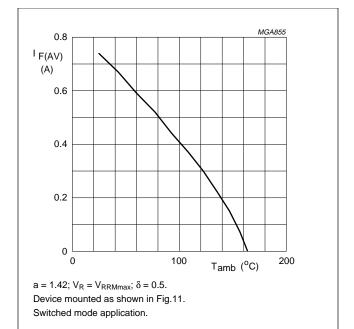
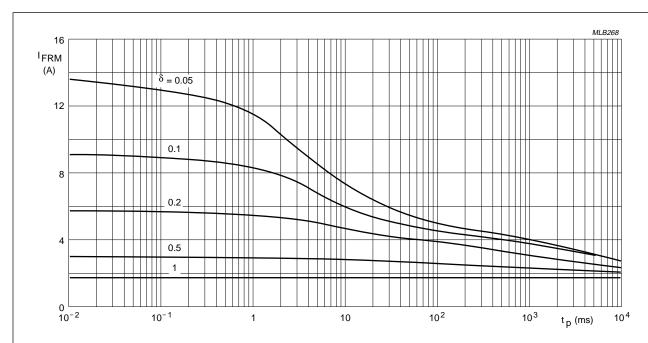
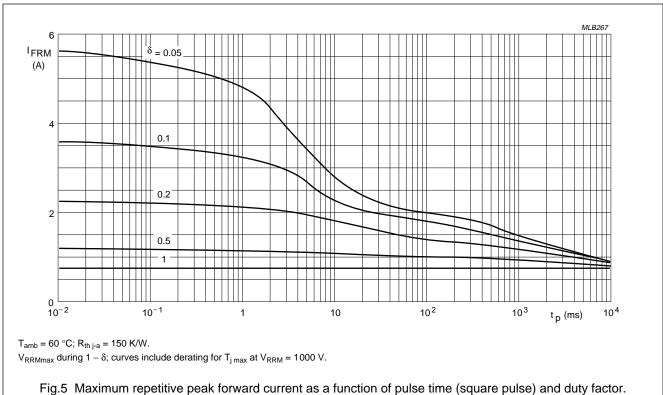
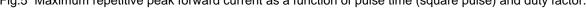
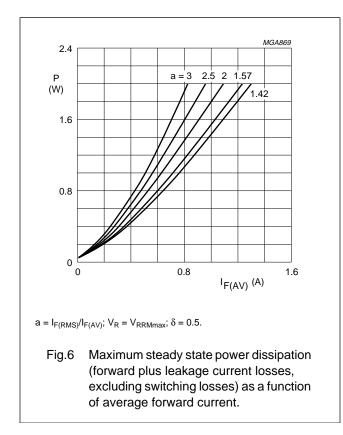
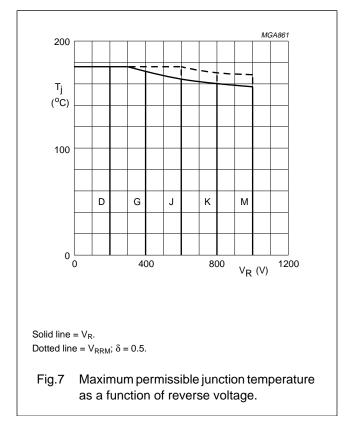



Fig.3 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).


 T_{tp} = 105 °C; $R_{th\ j\text{-}tp}$ = 30 K/W.


 V_{RRMmax} during 1 – δ ; curves include derating for $T_{j max}$ at V_{RRM} = 1000 V.


Fig.4 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.


Fast soft-recovery controlled avalanche rectifiers

BYD37 series

Fast soft-recovery controlled avalanche rectifiers

BYD37 series

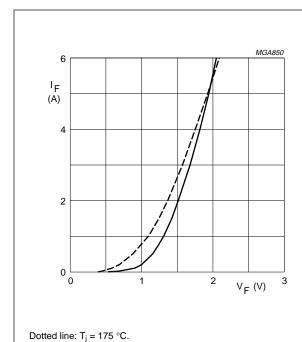


Fig.8 Forward current as a function of forward voltage; maximum values.

Solid line: $T_j = 25$ °C.

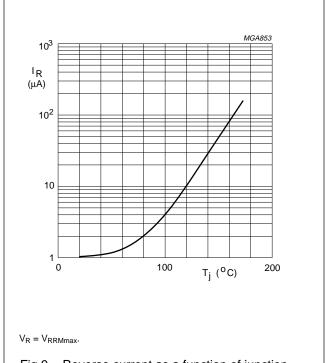
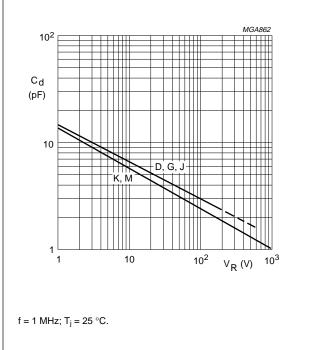
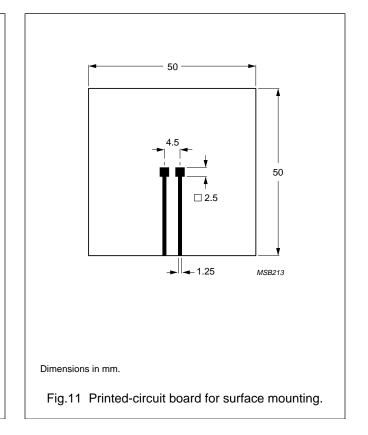
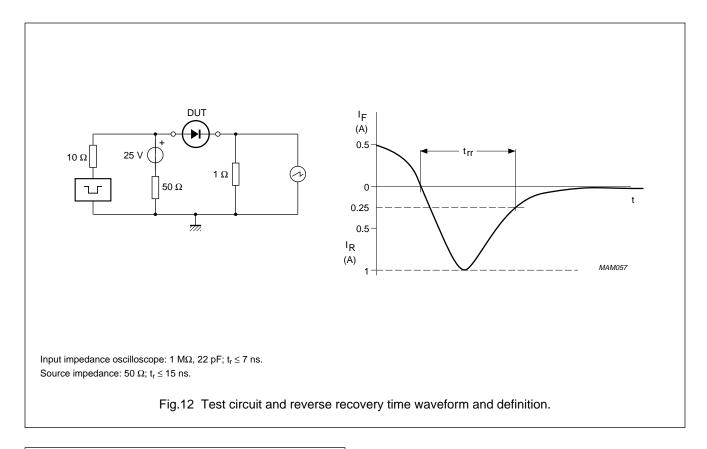
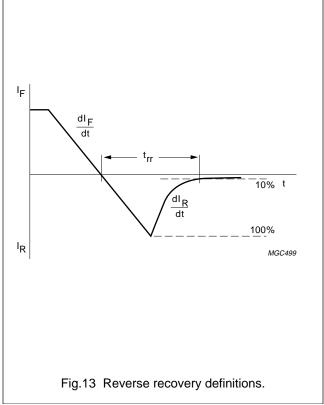


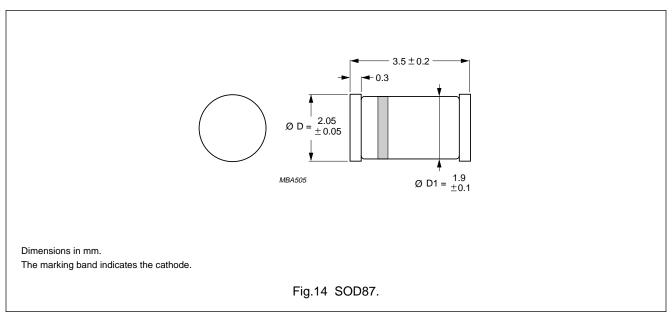
Fig.9 Reverse current as a function of junction temperature; maximum values.


Fig.10 Diode capacitance as a function of reverse voltage; typical values.

Fast soft-recovery controlled avalanche rectifiers

BYD37 series



Fast soft-recovery controlled avalanche rectifiers

BYD37 series

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

1996 Jun 05