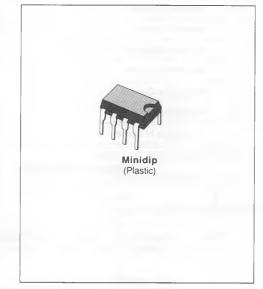
L3100B L3100B1

TRISIL UNIDIRECTIONAL PROGRAMMABLE VOLTAGE AND CURRENT SUPPRESSOR

- HIGH CURRENT CAPABILITY
- PROGRAMMABILITY BOTH IN VOLTAGE AND CURRENT

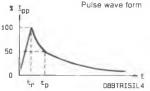

SGS-THOMSON MICROELECTRONICS

AUTOMATIC RECOVERY

DESCRIPTION

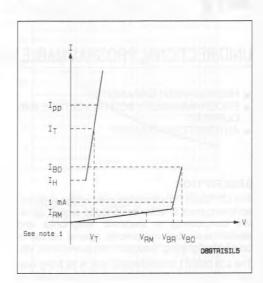
The L3100B/B1 is a transient overvoltage suppressor/overcurrent arrester designed to protect sensitive components in electronic telephones and telecommunication equipments against transients caused by lightning, induction from power lines, etc.

The L3100B/B1 characteristic, that is its firing voltage and current, can be easily programmed by means of inexpensive external components; more over, since this device recoveres automatically when the surge current falls below a fixed holding current, it may be used on remotely supplied lines. Finally, if destroyed, it becomes a permanent short circuit.



ABSOLUTE RATINGS (limiting values) (T₁ = 25 °C)

Symbol	Parameter	Value	Unit		
Ipp	Peak Pulse Current	1 ms expo	150	A	
		8-20 µs expo*	250		
ITSM	Non Repetitive Surge Peak on-state Current	t _p = 10 ms - Sinus	50	A	
di/dt	Critical Rate of Rise of on-state Current	Non repetitive	100	A/µs	
T _{stg} T _i	Storage and Junction Temperature Range		- 40 to 150 150	°C ℃	


THERMAL RESISTANCE

Symbol	Parameter	Value Unit			
Rth(j-a)	Junction to Ambient	80	°C/W		
* ANSI STD	C62				

ELECTRICAL CHARACTERISTICS $(T_j = 25 \ ^{\circ}C)$

Symbol	Parameter						
V _{RM}	Stand-off Voltage						
VBR	Breakdown Voltage						
VBO	Clamping Voltage						
Ι _Η	Holding Current						
VT	On-state Voltage @ IT						
IBO	Breakover Current						
l _{pp}	Peak-pulse Current						
V _{GN}	Gate Voltage						
I _{GN}	Firing Gate N Current						
VRGN	Reverse Gate N Voltage						
I _{GP}	Firing Gate P Current						

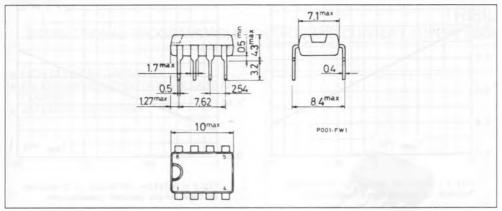
OPERATION WITHOUT GATE

Туре	I _{RM} @ V _{RM} max.		V _{BR} @I _R min. max.		V _{BO} @ I _{BO} max. min. max. See note 2			I _н min.	V _T typ. I _T = 1 A	C max. V _R = 5 V F = 1 MHz	
	(μ Α)	(V)	(∀)	(V)	(mA)	(∀)	(mA)	(mA)	(mA)	(∀)	(pF)
L3100B/B1	6 40		255 (3) 265 (4)		1	350	200	500	210 (3) 280 (4)	2	100

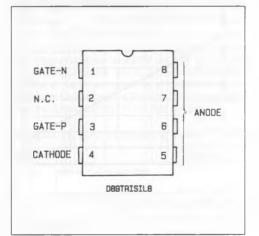
OPERATION WITH GATES

Туре	ype V _{GN} (V) I _G = 200 mA			A) = 100 V	(rgn V) - 1 mA	I _{GP} (mA) V _A - C = 100 V	
	min.	max.	min.	max.	min.	max.	min.	max.
L3100B/B1	0.6	1.8	30	200	0.7			150

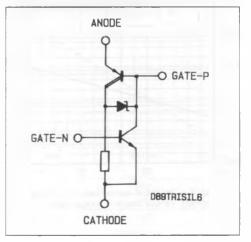
Notes : 1. Reverse characteristic : $I_R < 1 \text{ mA} @ V_R = 0.7 V.$

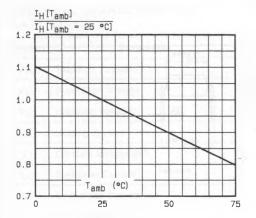

2. These devices are not designed to function as zeners ; continuous operation between 1 mA and I_{BO} will damage them 3. L3100B1

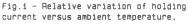
4. L3100B

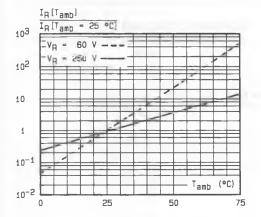


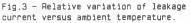
PACKAGE MECHANICAL DATA


MINIDIP Plastic


CONNECTION DIAGRAM




SCHEMATIC DIAGRAM



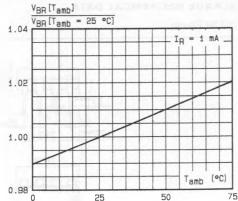


Fig.2 - Relative variation of breakdown voltage versus ambient temperature.

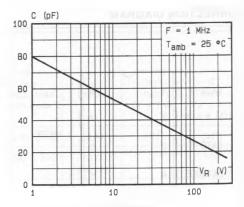


Fig.4 - Junction capacitance versus reverse applied voltage.

D89L3100B1P4

